
Relational and XML
Data Exchange

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Relational and XML Data Exchange

Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak

www.morganclaypool.com

ISBN: 9781608454112 paperback
ISBN: 9781608454129 ebook

DOI 10.2200/S00297ED1V01Y201008DTM008

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #8
Series Editor: M. Tamer Özsu, University of Waterloo

Series ISSN
Synthesis Lectures on Data Management
Print 2153-5418 Electronic 2153-5426

Synthesis Lectures on Data
Management

Editor
M. Tamer Özsu, University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo. The
series will publish 50- to 125 page publications on topics pertaining to data management. The scope
will largely follow the purview of premier information and computer science conferences, such as ACM
SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include, but not are
limited to: query languages, database system architectures, transaction management, data warehousing,
XML and databases, data stream systems, wide scale data distribution, multimedia data management,
data mining, and related subjects.

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak
2010

Database Replication
Bettina Kemme, Ricardo Jiménez Peris, and Marta Patiño-Martínez
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

iv

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

ABSTRACT
Data exchange is the problem of finding an instance of a target schema, given an instance of a
source schema and a specification of the relationship between the source and the target. Such a
target instance should correctly represent information from the source instance under the constraints
imposed by the target schema, and it should allow one to evaluate queries on the target instance
in a way that is semantically consistent with the source data. Data exchange is an old problem that
re-emerged as an active research topic recently, due to the increased need for exchange of data in
various formats, often in e-business applications.

In this lecture, we give an overview of the basic concepts of data exchange in both relational
and XML contexts. We give examples of data exchange problems, and we introduce the main tasks
that need to addressed. We then discuss relational data exchange, concentrating on issues such as
relational schema mappings, materializing target instances (including canonical solutions and cores),
query answering, and query rewriting. After that, we discuss metadata management, i.e., handling
schema mappings themselves. We pay particular attention to operations on schema mappings, such
as composition and inverse. Finally, we describe both data exchange and metadata management in
the context of XML. We use mappings based on transforming tree patterns, and we show that they
lead to a host of new problems that did not arise in the relational case, but they need to be addressed
for XML. These include consistency issues for mappings and schemas, as well as imposing tighter
restrictions on mappings and queries to achieve tractable query answering in data exchange.

KEYWORDS
data exchange, schema mappings, dependencies, chase, universal solutions, conjunc-
tive queries, query rewriting, mapping composition, mapping inverse, XML patterns,
mapping consistency, XML data exchange

vii

Contents

1 Overview .1

1.1 A data exchange example . 1
1.1.1 XML data exchange . 6

1.2 Overview of the main tasks in data exchange . 7
1.3 Key definitions . 8
1.4 Background . 10
1.5 Bibliographic comments . 10

2 Relational Mappings and Data Exchange . 11

2.1 Relational databases: key definitions . 11
2.1.1 Relational schemas and constraints . 11
2.1.2 Instances, constants, and nulls . 12

2.2 Relational schema mappings . 12
2.3 Materializing target instances . 14

2.3.1 Existence of Solutions . 16
2.3.2 Universal Solutions . 17
2.3.3 Materializing Universal Solutions . 20
2.3.4 Cores . 26

2.4 Query Answering . 29
2.4.1 Answering first-order and conjunctive queries . 29
2.4.2 Query Rewriting . 33

2.5 Summary . 35
2.6 Bibliographical comments . 35

3 Metadata Management . 37

3.1 Introduction . 37
3.2 Composition of schema mappings . 39

3.2.1 Extending st-tgds with second-order quantification 41
3.3 Inverting schema mapping . 48

viii CONTENTS

3.3.1 A first definition of inverse . 48
3.3.2 Bringing exchanged data back: The recovery of a schema mapping 53
3.3.3 Computing the inverse operator . 59

3.4 Summary . 64
3.5 Bibliographic comments . 64

4 XML Mappings and Data Exchange . 67

4.1 XML databases . 67
4.1.1 XML documents and DTDs . 67
4.1.2 Expressing properties of trees . 68

4.2 XML schema mappings . 74
4.3 Static analysis of XML schema mappings . 77

4.3.1 Consistency . 77
4.3.2 Absolute consistency . 84

4.4 Exchange with XML schema mappings . 85
4.4.1 Data exchange problem . 85
4.4.2 Hardness of query answering . 87
4.4.3 Tractable query answering . 91

4.5 Summary . 94
4.6 Bibliographic comments . 95

Bibliography . 97

Authors’ Biographies . 103

2 1. OVERVIEW

dest airl city coun phone

SERVES

src dest airl dep

FLIGHT

dep airl

INFO FLIGHT

f# arr

coun

ROUTES

city pop

src

ROUTES

f#

Figure 1.1: Schema mapping: a simple graphical representation

• SERVES(airline,city,country,phone)

This relation has information about cities served by airlines: for example, it may have a tuple
(AirFrance, Santiago, Chile, 5550000), indicating that Air France serves Santiago,
Chile, and its office there can be reached at 555-0000.

We do not start from scratch: there is a source database available from which we can transfer
information. This source database has two relations:

• FLIGHT(source,destination,airline,departure)

This relation contains information about flights, although not all the information needed in
the target. We only have source, destination, and airline (but no flight number), and departure
time (but no arrival time).

• GEO(city,country,population)

This relation has some basic geographical information: cities, countries where they are located,
and their population.

As the first step of moving the data from the source database into our target, we have to specify a
schema mapping, a set of relationships between the two schemas. We can start with a simple graphical
representation of such a mapping shown in Figure 1.1.The arrows in such a graphical representation
show the relationship between attributes in different schemas.

But simple connections between attributes are not enough. For example, when we create
records in ROUTES and INFO_FLIGHT based on a record in FLIGHT, we need to ensure that the
values of flight# attribute (abbreviated as f# in the Figure) are the same. This is indicated by a
curved line connecting these attributes. Likewise, when we populate table SERVES, we only want to
include cities which appear in table FLIGHT – this is indicated by the line connecting attributes in
tables GEO and FLIGHT.

1.1. A DATA EXCHANGE EXAMPLE 3

(2)

airl city coun phone

SERVES

src dest airl dep

FLIGHT

dep airl

INFO FLIGHT

f# arr

coun

ROUTES

city pop

src

ROUTES

f# dest

(1) (1) (1)
(1)

(2) (2)

Figure 1.2: Schema mapping: a proper graphical representation

Furthermore, there are several rules in a mapping that help us populate the target database.
In this example, we can distinguish two rules. One uses table FLIGHT to populate ROUTES and
INFO_FLIGHT, and the other uses both FLIGHT and GEO to populate SERVES. So, in addition, we
annotate arrows with names or numbers of rules that they are used in. Such a revised representation
is shown in Figure 1.2.

While it might be easy for someone understanding source and target schemas to produce a
graphical representation of the mapping, we need to translate it into a formal specification. Let us
look at the first rule which says:

whenever we have a tuple (src,dest,airl,dep) in relation FLIGHT, we must have a
tuple in ROUTES that has src and dest as the values of the second and the third attributes,
and a tuple in INFO_FLIGHT that has dep and airl as the second and the fourth attributes.

Formally, this can be written as:

FLIGHT(src,dest,airl,dep) −→
ROUTES(_,src,dest), INFO_FLIGHT(_,dep,_,airl)

This is not fully satisfactory: indeed, as we lose information that the flight numbers must be the
same; we need to explicitly mention names of all the variables and produce the following rule:

FLIGHT(src,dest,airl,dep) −→
ROUTES(f#,src,dest), INFO_FLIGHT(f#,dep,arr,airl)

What is the meaning of such a rule? In particular, what are those variables that appear in
the target specification without being mentioned in the source part? What the mapping says is that
values for these variables must exist in the target, in other words, the following must be satisfied:

FLIGHT(src,dest,airl,dep) −→
∃f# ∃arr (

ROUTES(f#,src,dest) ∧ INFO_FLIGHT(f#,dep,arr,airl)
)

4 1. OVERVIEW

To complete the description of the rule, we need to clarify the role of variables src, dest, airl and
dep. The meaning of the rule is that for every tuple (src,dest,airl,dep) in table FLIGHT, we
have to create tuples in relations ROUTES and INFO_FLIGHT of the target schema. Hence, finally,
the meaning of the first rule is:

∀src ∀dest ∀airl ∀dep
(
FLIGHT(src,dest,airl,dep) −→

∃f# ∃arr (
ROUTES(f#,src,dest) ∧ INFO_FLIGHT(f#,dep,arr,airl)

))
Note that this is a query written in relational calculus, without free variables. In other words, it is
a sentence of first-order logic, over the vocabulary including both source and target relations. The
meaning of this sentence is as follows: given a source S, a target instance we construct is such that
together, S and T satisfy this sentence.

We now move to the second rule. Unlike the first, it looks at two tuples in the source:
(src,dest,airl,dep) in FLIGHT and (city,country,popul) in GEO. If they satisfy the join
condition city=scr, then a tuple needs to be inserted in the target relation SERVES:

FLIGHT(src,dest,airl,dep), GEO(city,country,popul), city=src −→
SERVES(airl,city,country,phone)

As with the first rule, the actual meaning of this rule is obtained by explicitly quantifying the variables
involved:

∀city ∀dest ∀airl ∀dep ∀country ∀popul
(

FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

)
We can also have a similar rule in which the destination city is moved in the SERVES table in the
target:

∀city ∀dest ∀airl ∀dep ∀country ∀popul
(

FLIGHT(src,city,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

)
These rules together form what we call a schema mapping: a collection of rules that specify

the relationship between the source and the target. When we write them, we actually often omit
universal quantifiers ∀, as they can be reconstructed by the following rule:

• every variable mentioned with one of the source relations is quantified universally.

With these conventions, we arrive at the following schema mapping M:

1.1. A DATA EXCHANGE EXAMPLE 5

(1) FLIGHT(src,dest,airl,dep) −→
∃f# ∃arr (

ROUTES(f#,src,dest) ∧ INFO_FLIGHT(f#,dep,arr,airl)
)

(2) FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

(3) FLIGHT(src,city,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

Now, what does it mean to have a target instance, given a source instance and a mapping? Since
mappings are logical sentences, we want target instances to satisfy these sentences, with respect to
the source. More precisely, note that mappings viewed as logical sentences mention both source
and target schemas. So possible target instances T for a given source S must satisfy the following
condition:

For each condition ϕ of the mapping M, the pair (S, T) satisfies ϕ.

We call such instances T solutions for S under M. Look, for example, at our mapping M, and assume
that the source S has a tuple (Paris, Santiago, AirFrance, 2320). Then every solution T for S under
M must have tuples

(x, Paris, Santiago) in ROUTES and (x, 2320, y, AirFrance) in INFO_FLIGHT

for some values x and y, interpreted as flight number and arrival time. The mapping says nothing
about these values: they may be real values (constants), e.g., (406, Paris, Santiago), or nulls, indicating
that we lack this information at present.We shall normally use the symbol ⊥ to denote nulls, so a com-
mon way to populate the target would be with tuples (⊥, Paris, Santiago) and (⊥, 2320,⊥′, AirFrance).
Note that the first attributes of both tuples, while being unknown, are nonetheless the same. This
situation is referred to as having marked nulls, or naïve nulls, as they are used in naïve tables, studied
extensively in connection with incomplete information in relational databases. At the same time, we
know nothing about the other null ⊥′ used: nothing prevents it from being different from ⊥ but
nothing tells us that it should be.

Note that already this simple example leads to a crucial observation that makes the data
exchange problem interesting: solutions are not unique. In fact, there could be infinitely many solutions:
we can use different marked nulls, or we can instantiate them with different values.

If solutions are not unique, how can we answer queries? Consider, for example, a Boolean
(yes/no) query “Is there a flight from Paris to Santiago that arrives before 10am?” The answer to this
query has to be ‘no’ even though in some solutions we shall have tuples with arrival time before
10am. However, in others, in particular in the one with null values, the comparison with 10am will
not evaluate to true, and thus we have to return ‘no’ as the answer.

On the other hand, the answer query “Is there a flight from Paris to Santiago?” is ‘yes’, as the
tuple including Paris and Santiago will be in every solution. Intuitively, what we want to do in query

6 1. OVERVIEW

answering in data exchange is to return answers that will be true in every solution. These are called
certain answers; we shall define them formally shortly.

1.1.1 XML DATA EXCHANGE
Before outlining the key tasks in data exchange, we briefly look at the XML representation of the
above problem. XML is a flexible data format for storing and exchanging data on the Web. XML
documents are essentially trees, that can represent data organized in a way more complex than
the usual relational databases. But each relational database can be encoded as an XML document;
a portion of our example database, representing information about the Paris–Santiago flight and
information about Santiago, is shown in the picture below.

r

FLIGHT

t1

src

‘Paris’

dest

‘Santiago’

airl

‘Air France’

dep

‘2300’

GEO

t2

city

‘Santiago’

country

‘Chile

popul

‘6M’

The tree has a root r with two children, corresponding to relations FLIGHT and GEO. Each of
those has several children, labeled t1 and t2, respectively, corresponding to tuples in the relations. We
show one tuple in each relation in the example. Each t1-node has four children that correspond to
the attributes of FLIGHT and each t2-node has three children, with attributes of GEO. Finally, each
of the attribute nodes has a child holding the value of the attribute.

To reformulate a rule in a schema mapping in this language, we show how portions of trees
are restructured. Consider, for example, the rule

FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

We restate it in the XML context as follows:
r

FLIGHT

t1

src

x

airl

y

GEO

t2

city

x

country

z

r

SERVES

t

airl

y

city

x

country

z

phone

u

That is, if we have tuples in FLIGHT and GEO that agree on the values of the source and
city attributes, we grab the values of the airline and country attributes, invent a new value u

for phone and create a tuple in relation SERVES.

1.2. OVERVIEW OF THE MAIN TASKS IN DATA EXCHANGE 7

The rules of XML schema mappings are thus represented via tree patterns. Essentially, they say
that if a certain pattern occurs in a source document, some other pattern,obtained by its restructuring,
must occur in the target.

This view of XML schema mappings is not surprising if we note that in our relational examples,
the rules are obtained by using a relational pattern – i.e., a conjunction of source atoms – and
rearranging them as a conjunction of target atoms. Conjunctions of atoms are natural analogs of tree
patterns. Indeed, the pattern on the right-hand side of the above rule, for example, can be viewed
as the conjunction of the statements about existence of the following edge relations: between the
root and a node labeled SERVES, between that node an a node labeled t , between the t-node and
nodes labeled airl, city, country, and phone, respectively, and between those nodes and nodes
carrying attribute values y, x, z, and u.

Of course, we shall see when we describe XML data exchange that patterns could be signifi-
cantly more complicated: they need not be simple translations of relational atoms. In fact, one can
use more complicated forms of navigation such as the horizontal ordering of siblings in a document,
or the descendant relation. But for now, our goal was to introduce the idea of tree patterns by means
of a straightforward translation of a relational example.

1.2 OVERVIEW OF THE MAIN TASKS IN DATA EXCHANGE

The key tasks in many database applications can be roughly split into two groups:

1. Static analysis. This mostly involves dealing with schemas; for example, the classical relational
database problems such as dependency implication and normalization fall into this category.
Typically, the input one considers is (relatively) small, e.g., a schema, a set of constraints.
Therefore, somewhat higher complexity bounds are normally tolerated: for example, many
problems related to reasoning about dependencies are complete for complexity classes such as
NP, or coNP, or Pspace.

2. Dealing with data. These are the key problems such as querying or updating the data. Of
course, given that databases are typically large, only low-complexity algorithms are tolerated
when one handles data. For example, the complexity of evaluating a fixed relational algebra
query is very low (AC0, to be precise), and even more expressive languages such as Datalog
stay in Ptime.

In data exchange, the key tasks too can be split into two groups. For static analysis tasks, we treat
schema mappings as first-class citizens. The questions one deals with are generally of two kinds:

• Consistency. For these questions, the input is a schema mapping M, and the question is whether
it makes sense: for example, whether there exists a source S that has a solution under M, or
whether all sources of a given schema have solutions. These analysis are important for ruling
out “bad” mappings that are unlikely to be useful in data exchange.

8 1. OVERVIEW

• Operations on mappings. Suppose we have a mapping M from a source schema Rs to a target
schema Rt, and another mapping M′ that uses Rt as the source schema and maps it into a
schema Ru. Can we combine these mappings into one, the composition of the two, M ◦ M′,
which maps Rs to Ru? Or can we invert a mapping, and find a mapping M−1 from Rt into Rs,
that undoes the transformation performed by M and recovers as much original information
about the source as possible? These questions arise when one considers schema evolution: as
schemas evolve, so do the mappings between them. And once we understand when and how
we can construct mappings such as M ◦ M′ or M−1, we need to understand their properties
with respect to the ‘existence of solutions’ problem.

Tasks involving data are generally of two kinds.

• Materializing target instances. Suppose we have a schema mapping M and a source instance S.
Which target instance do we materialize? As we already saw, there could be many – perhaps
infinitely many – target instances which are solutions for S under M. Choosing one, we should
think of three criteria:

1. it should faithfully represent the information from the source, under the constraints
imposed by the mapping;

2. it should not contain (too much) redundant information;

3. the computational cost of constructing the solution should be reasonable.

• Query answering. Ultimately, we want to answer queries against the target schema. As we
explained, due the existence of multiple solutions, we need to answer them in a way that is
consistent with the source data. So if we have a materialized target T and a query Q, we need
to find a way of evaluating it to produce the set of certain answers. As we shall see, sometimes
computing Q(T) does not give us certain answers, so we may need to change Q into another
query Q′ and then evaluate Q′ on a chosen solution to get the desired answer. The complexity
of this task will also depend on a class of queries to which Q belongs. We shall see that for
some classes, constructing Q′ is easy, while for others, Q′ must come from languages much
more expressive (and harder to evaluate) than SQL, and for some, it may not even exist.

1.3 KEY DEFINITIONS
We now get a bit more formal and present the key definitions related to data exchange.For a relational
schema R, we let Inst(R) stand for the set of all database instances of R. We start with

• a source schema Rs,

• a target schema Rt, and

• a set �st of source-to-target dependencies.

1.3. KEY DEFINITIONS 9

Source-to-target dependencies, or stds, are logical sentences over Rs and Rt; for example,

∀src ∀dest ∀airl ∀dep
(
FLIGHT(src,dest,airl,dep) −→

∃f# ∃arr (
ROUTES(f#,src,dest) ∧ INFO_FLIGHT(f#,dep,arr,airl)

))
We may also have

• a set of target dependencies �t , i.e., logical sentences over Rt. These are typical database
integrity constraints such as keys and foreign keys.

We define a schema mapping as a quadruple

M = (Rs, Rt, �st , �t),

or just (Rs, Rt, �st), when there are no target constraints.
Now assume S is a source instance, i.e., a database instance over Rs. Then a target instance T

is called a solution for S under M if and only if S and T together satisfy all the stds in �st , and T

satisfies all the constraints in �t . That is, T is a solution for S under M if

(S, T) |= �st and T |= �t .

For mappings without target constraints, we only require (S, T) |= �st . The set of all solutions for
S under M is denoted by SolM(S):

SolM(S) = {T ∈ Inst(Rt) | (S, T) |= �st and T |= �t }.
Semantically, we can view the mapping M as a binary relation between Inst(Rs) and Inst(Rt), i.e.,
�M� ⊆ Inst(Rs) × Inst(Rt) is defined as

�M� = {(S, T) | S ∈ Inst(Rs), T ∈ Inst(Rt), and T ∈ SolM(S)}.
If we have a query Q over the target schema Rt, we want to compute certain answers; these are
answers true in all solutions for a given source instance S. That is, certain answers are defined as

certainM(Q, S) =
⋂

T ∈SolM(S)

Q(T).

We want to compute certainM(Q, S) using just one specific materialized solution, say T0. In general,
Q(T0) need not be equal certainM(Q, S). Instead, one is looking for a different query Q′, called a
rewriting of Q, so that

Q′(T0) = certainM(Q, S).

When we have such a materialized solution T0 and a rewriting Q′ for each query Q we want to
pose, we have the answer to the two key questions of data exchange. First, we know which solution
to materialize – it is T0. Second, we know how to answer queries – compute the rewriting Q′ of Q

and apply it to T0.

10 1. OVERVIEW

1.4 BACKGROUND
We assume that the reader is familiar with the following.

Relational database model We expect the reader to have seen the relational database model and
be familiar with the standard notions of schemas, instances, constraints, and query languages.
In particular, we assume the knowledge of the following:

• Basic relational query languages, especially relational calculus (i.e., first-order predicate
logic, often abbreviated as FO) and its fragments such as:

1. Conjunctive queries, also known as select-project-join queries, formally defined as
the ∃, ∧-fragment of FO, or the σ, π,×-fragment of relational algebra; and

2. Unions of conjunctive queries, that correspond to select-project-join-union queries.

• Relational integrity constraints, especially keys and foreign keys, and more generally,
functional and inclusion dependencies.

XML Although we define the key XML concepts we need, it would help the reader to have seen
them before. We assume the basic knowledge of automata on words (strings); all the concepts
related to automata on trees will be defined here.

1.5 BIBLIOGRAPHIC COMMENTS
Data exchange, also known as data translation, is a very old problem that arises in many tasks where
data must be transferred between independent applications [Housel et al., 1977]. Examples of data
exchange problems appeared in the literature over 30 years ago. But as the need for data exchange
increased over the years [Bernstein, 2003], research prototypes appeared [Fagin et al., 2009] and
made their way into commercial database products. The theory was lagging behind until the paper
by Fagin et al. [2005a] which presented the widely accepted theoretical model of data exchange. It
developed the basis of the theory of data exchange, by identifying the key problems and looking into
materializing target instances and answering queries.

Within a year or two of the publication of the conference version of this paper, data ex-
change grew into a dominant subject in the database theory literature, with many papers published
in conferences such as PODS, SIGMOD, VLDB, ICDT, etc. By now, there are several papers
presenting surveys of various aspects of relational data exchange and schema mappings [Barceló,
2009; Bernstein and Melnik, 2007; Kolaitis, 2005]; extensions to XML have been described as well
[Amano et al., 2009; Arenas and Libkin, 2008]. Much more extensive bibliographic comments will
be provided in the subsequent chapters.

The subject of data integration has also received much attention, see, for example, Haas
[2007] and Lenzerini [2002] for a keynote and a tutorial. Relationships between data exchange and
integration have also been explored [Giacomo et al., 2007].

11

C H A P T E R 2

Relational Mappings and Data
Exchange

2.1 RELATIONAL DATABASES: KEY DEFINITIONS

In Chapter 1, we presented the key definitions related to data exchange in the most general setting.
We now restate these definitions in the context of relational data exchange, and recall some key
concepts from relational database theory.

2.1.1 RELATIONAL SCHEMAS AND CONSTRAINTS
A relational schema R is a finite sequence 〈U1, . . . , Um〉 of relation symbols, with each Ui having a
fixed arity ni > 0. For example, the target relational schema considered in the introduction has three
relations: ROUTES of arity 3, INFO_FLIGHT of arity 4, and SERVES, also of arity 4.

We sometimes consider relational schemas with integrity constraints, which are conditions
that instances of such schemas must satisfy. The most commonly used constraints in databases are
functional dependencies (and a special case of those: keys) and inclusion dependencies (and a special
case of functional and inclusion dependencies: foreign keys).

A functional dependency states that a set of attributes X uniquely determines another set of
attributes Y ; a key states that a set of attributes uniquely determines the tuple. For example, it is
reasonable to assume that flight# is a key of ROUTES, which one may write as a logical sentence

∀f ∀s∀d∀s′∀d ′ (
ROUTES(f, s, d) ∧ ROUTES(f, s′, d ′) → (s = s′) ∧ (d = d ′)

)
.

An inclusion dependency states that a value of an attribute (or values of a set of attributes) occurring
in one relation must occur in another relation as well. For example, we may expect each flight number
appearing in INFO_FLIGHT to appear in ROUTES as well: this is expressed as a logical sentence

∀f ∀d∀a∀a′ (
INFO_FLIGHT(f, d, a, a′) → ∃s∃d ′ ROUTES(f, s, d ′)

)
.

Foreign keys are simply a combination of an inclusion dependency and a key constraint: by combining
the above inclusion dependency with the constraint that flight# is a key for ROUTES, we get a
foreign key constraint INFO_FLIGHT[flight#] ⊆FK ROUTES[flight#], stating that each value
of flight number in INFO_FLIGHT occurs in ROUTES, and that this value is an identifier for the tuple
in ROUTES.

12 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

2.1.2 INSTANCES, CONSTANTS, AND NULLS
An instance S of schema R = 〈U1, . . . , Um〉 assigns to each relation symbol Ui , where 1 ≤ i ≤ m, a
finite ni-ary relation US

i .The domain of instance S, denoted by Dom(S), is the set of all elements that
occur in any of the relations US

i . It is often convenient to define instances by simply listing the tuples
attached to the corresponding relation symbols. Further, sometimes we use the notation U(t̄) ∈ S

instead of t̄ ∈ US , and call U(t̄) a fact of S. For instance, FLIGHT(Paris, Santiago, AirFrance, 2320) is
an example of a fact. Finally, given instances S, S′ of R, we denote by S ⊆ S′ the fact that US

i ⊆ US′
i

for every i ∈ {1, . . . , m}, and we denote by ‖S‖ the size of S.
We have seen in earlier examples that target instances may contain incomplete information.

This is modeled by having two disjoint and infinite set of values that populate instances. One of
them is the set of constants, denoted by Const, and the other one is the set of nulls, or variables,
denoted by Var. In general, the domain of an instance is a subset of Const ∪ Var (although we
shall assume that domains of a source instances are always contained in Const). We usually denote
constants by lowercase letters a, b, c, . . . , while nulls are denoted by symbols ⊥, ⊥1, ⊥2, etc.

We now need a couple of standard definitions related to database instances with nulls. Given
an instance S of schema R, let V be the set of all nulls that occur in S. We then call a mapping
ν : V → Const a valuation. By ν(S), we mean the instance obtained from S by changing every
occurrence of a null ⊥ by ν(⊥). Then

Rep(S) = {S′ over Const | ν(S) ⊆ S′ for some valuation ν}

is the set of instances over Const represented by S. This notion is typically viewed as the semantics
of an incomplete instance S with nulls: such an instance may represent several complete instances
depending on the evaluation of nulls, and possibly adding new tuples.

2.2 RELATIONAL SCHEMA MAPPINGS

Following the terminology used in Chapter 1, we define a relational mapping M as a tuple
(Rs, Rt, �st , �t), where Rs and Rt are disjoint relational schemas, Rs is called the source schema,
Rt is called the target schema, �st is a finite set of source-to-target dependencies (i.e., dependencies
over the relations in Rs and Rt), and �t is a finite set of target dependencies (i.e., dependencies over
Rt). If the set �t is empty, i.e., there are no target dependencies, we write M = (Rs, Rt, �st).

Recall that instances of Rs are called source instances, while instances of Rt are called target
instances. Source instances are usually denoted S, S1, S2, . . . , while target instances are denoted
T , T1, T2, . . .

To define the notion of a solution we need the following terminology. Given schemas R1 =
〈U1, . . . , Um〉 and R2 = 〈W1, . . . , Wn〉, with no relation symbols in common, we denote by 〈R1, R2〉
the schema 〈U1, . . . , Um, W1, . . . , Wn〉. Further, if S1 is an instance of R1 and S2 is an instance of
R2, then (S1, S2) denotes an instance T of 〈R1, R2〉 such that UT

i = U
S1
i and WT

j = W
S2
j , for each

i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.

2.2. RELATIONAL SCHEMA MAPPINGS 13

Given a source instance S over Const, we say that a target instance T over Const ∪ Var is a
solution for S under M, if (S, T) satisfies every sentence in �st and T satisfies every sentence in �t .
In symbols, (S, T) |= �st and T |= �t . When M is clear from the context, we say call T simply a
solution for S. As before, the set of solutions for instance S will be denoted by SolM(S).

Admitting arbitrary expressive power for specifying dependencies in data exchange easily leads
to undecidability of some fundamental problems, like checking for the existence of solutions. Thus,
it is customary in the data exchange literature to restrict the study to a class of mappings M that lead
to efficient decidability of the key computational tasks associated with data exchange. The standard
restrictions used in data exchange are as follows: constraints used in �st are tuple-generating depen-
dencies (which generalize inclusion dependencies), and constraints in �t are either tuple-generating
dependencies or equality-generating dependencies (which generalize functional dependencies). More
precisely:

• �st consists of a set of source-to-target tuple-generating dependencies (st-tgds) of the form

∀x̄∀ȳ (ϕs(x̄, ȳ) → ∃z̄ ψt (x̄, z̄)),

where ϕs(x̄, ȳ) and ψt(x̄, z̄) are conjunctions of atomic formulas in Rs and Rt, respectively;
and

• �t is the union of a set of tuple-generating dependencies (tgds), i.e., dependencies of the form

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),

where ϕ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of atomic formulas in Rt, and a set of equality-
generating dependencies (egds), i.e., dependencies of the form

∀x̄ (ϕ(x̄) → xi = xj),

where ϕ(x̄) is a conjunction of atomic formulas in Rt, and xi, xj are variables among those in
x̄.

One can observe that the mapping we used in the Introduction follows this pattern. For the sake
of simplicity, we usually omit universal quantification in front of st-tgds, tgds, and egds. No-
tice, in addition, that each (st-)tgd ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) is logically equivalent to the formula
(∃ȳ ϕ(x̄, ȳ)) → (∃z̄ ψ(x̄, z̄)). Thus, when we use notation θ(x̄) → ∃z̄ ψ(x̄, z̄) for a (st-)tgd, we
assume that θ(x̄) is a formula of the form ∃ȳ ϕ(x̄, ȳ), where ϕ(x̄, ȳ) is a conjunction of atomic
formulas. Also, we denote by ‖M‖ the size of a mapping M.

From now on, and unless stated otherwise, we assume all relational mappings to be of the
restricted form specified above. The intuition behind the different components of these mappings
is as follows. Source-to-target dependencies in �st are a tool for specifying which conditions on the
source imply a condition on the target. But from a different point of view, one can also see them
as a tool for specifying how source data gets translated into target data. In addition, the translated

14 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

data must satisfy usual database constraints. This is represented by means of the target dependen-
cies in �t . It is important to notice that the mappings described above are not restrictive from a
database point of view. Indeed, tuple-generating dependencies together with equality generating
dependencies precisely capture the class of embedded dependencies. And the latter class contains all
relevant dependencies that appear in relational databases, e.g., it contains functional and inclusion
dependencies, among others.

There is a particular class of data exchange mappings, called Local-As-View (LAV) mappings,
that often appears in the literature. This class had its origins in the data integration community, but
it has proved to be of interest also for data exchange. Formally, a mapping without target constraints
M = (Rs, Rt, �st) is a LAV mapping if �st consists of LAV st-tgds of the form ∀x̄(U(x̄) →
∃z̄ ϕt (x̄, z̄)), where U is a relation symbol in Rs. That is, to generate tuples in the target, one needs
a single source fact.

2.3 MATERIALIZING TARGET INSTANCES
As we mentioned in Chapter 1, one of the key goals in data exchange is to materialize a solution that
reflects as accurately as possible the given source instance. The next example shows two interesting
phenomena regarding solutions in data exchange that, in particular, explain why the materialization
problem is far from trivial. First, solutions for a given source instance are not necessarily unique.
Second, there are source instances that have no solutions.

Example 2.1 Let us revisit the data exchange example presented in Chapter 1. Thus, M =
(Rs, Rt, �st , �t) is a mapping such that:

• The source schema Rs consists of the ternary relation

GEO(city,country,population)

and the 4-ary relation

FLIGHT(source,destination,airline,departure).

• The target schema Rt consists of the ternary relation

ROUTES(flight#,source,destination)

and the 4-ary relations

INFO_FLIGHT(flight#,departure_time,arrival_time,airline)
and

SERVES(airline,city,country,phone).

2.3. MATERIALIZING TARGET INSTANCES 15

• �st consists of the following st-tgds:

FLIGHT(src,dest,airl,dep) −→
∃f#∃arr (ROUTES(f#,src,dest) ∧ INFO_FLIGHT(f#,dep,arr,airl))

FLIGHT(city,dest,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone)

FLIGHT(src,city,airl,dep) ∧ GEO(city,country,popul) −→
∃phone SERVES(airl,city,country,phone).

• There are no target dependencies, i.e., �t = ∅.

It is clear that every source instance has a solution under M. Furthermore, since the st-tgds do not
completely specify the target, solutions are not necessarily unique up to isomorphism, and, indeed,
there is an infinite number of solutions for each source instance.

On the other hand, assume that M′ is the extension of M with the target dependency
that imposes that src is a key in ROUTES(f#,src,dest). Then it is no longer true that ev-
ery source instance has a solution under M′. Indeed, consider a source instance S that con-
tains facts FLIGHT(Paris, Santiago, AirFrance, 2320) and FLIGHT(Paris, Rio, TAM , 1720). Then
the first st-tgd in �st imposes that there are facts of the form ROUTES(x, Paris, Santiago) and
ROUTES(y, Paris, Rio) in every solution T for S. But this contradicts the key condition on relation
Routes(f#,src,dest). We conclude that S has no solutions under M′. �

This example suggests that in order to be able to materialize a target solution for a given source
instance, we have to be able to do two things. First, to determine whether a solution exists at all;
and second, in case that there is more than just one solution, to compute the one that reflects most
accurately the source data. Each one of these issues is naturally associated with a relevant data
exchange problem.

• First, in order to determine whether solutions exist, it is necessary to understand the decidability
of the problem of checking for the existence of solutions, as defined below:

Problem: Existence of solutions for relational mapping M.
Input: A source instance S.
Question: Is there a solution for S under M?

• Second, it is necessary to identify the class of data exchange solutions that most accurately
reflect the source data and to understand the computability of the solutions in this class.

This section is devoted to the study of these two problems. First, it is shown in Section 2.3.1 that,
in the more general scenario, the existence of solutions problem is undecidable. Second, in Section

16 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

2.3.2 we present a class of solutions, called universal solutions, that are widely assumed to be the
preferred solutions in data exchange. Unfortunately, as we point out below, universal solutions are
not a general phenomenon in data exchange as there are source instances that have solutions but no
universal solutions.

The two previous facts raise the need for identifying a relevant class of relational mappings
that satisfies the following desiderata:

(C1) The existence of solutions implies the existence of universal solutions;

(C2) checking the existence of solutions is a decidable (ideally, tractable) problem; and

(C3) for every source instance that has a solution, at least one universal solution can be computed
(hopefully, in polynomial time).

The definition of such a class is given in Section 2.3.3. Finally, Section 2.3.4 is devoted to the study
of a particular universal solution, called the core, which exhibits good properties for data exchange.

2.3.1 EXISTENCE OF SOLUTIONS
As we have mentioned on and on, one of the goals in data exchange is materializing a solution
that reflects as accurately as possible the source data. Unfortunately, even the most basic problem of
checking the existence of solutions (for a fixed mapping) is undecidable.

Theorem 2.2 There exists a relational mapping M = (Rs, Rt, �st , �t), such that the problem of
checking whether a given source instance has a solution under M, is undecidable.

Proof. We reduce from the embedding problem for finite semi-groups (explained below), which is
known to be undecidable.

Recall that a finite semi-group is an algebra A = (A, f), where A is a finite nonempty set
and f is an associative binary function on A. Let B = (B, g) be a partial finite algebra; i.e., B is a
finite nonempty set and g is a partial function from B × B to B. Then B is embeddable in the finite
semi-group A = (A, f) if and only if B ⊆ A and f is an extension of g, that is, whenever g(a, a′)
is defined, we have that g(a, a′) = f (a, a′). The embedding problem for finite semi-groups is as
follows: given a finite partial algebra B = (B, g), is B embeddable in some finite semi-group?

We now construct a relational mapping M = (Rs, Rt, �st , �t) such that the embedding
problem for finite semi-groups is reducible to the problem of existence of solutions for M. The
mapping M is constructed as follows:

• Rs consists of the ternary relation symbol U , while Rt consists of the ternary relation symbol
V . Intuitively, both U and V encode the graphs of binary functions.

• �st = {U(x, y, z) → V (x, y, z)}.

2.3. MATERIALIZING TARGET INSTANCES 17

• �t consists of one egd and two tgds. First, an egd

V (x, y, z) ∧ V (x, y, z′) → z = z′,

asserts that V encodes a function. Second, a tgd

V (x, y, u) ∧ V (y, z, v) ∧ V (u, z, w) → V (x, v, w),

that asserts that the function encoded by V is associative. Finally, a tgd

V (x1, x2, x3) ∧ V (y1, y2, y3) →
∧

1≤i,j≤3

∃zij V (xi, yj , zij)

that states that the function encoded by V is total. Indeed, this tgd expresses that if two
elements a and b appear in the interpretation of V , then there must be an element c such that
V (a, b, c).

Let B = (B, g) be a finite partial algebra. Consider the source instance SB = {U(a, b, c) | g(a, b) =
c}. It is clear that B is embeddable in the class of finite semi-groups if and only if SB has a solution
under M. This shows that the existence of solutions problem for M is undecidable. �

2.3.2 UNIVERSAL SOLUTIONS
As we have mentioned above, we want to identify which data exchange solutions better reflect the
source data. As it is widely accepted in the data exchange literature, this corresponds to the class of
universal solutions. Intuitively, a solution is universal when it is more general than any other solution.
Next example will help us to illustrate when a solution is more general than other.

Example 2.3 (Example 2.1 continued) Consider the source instance

S = {FLIGHT(Paris, Santiago, AirFrance, 2320)}.
Then one possible solution for S under M is

T = {ROUTES(⊥1, Paris, Santiago), INFO_FLIGHT(⊥1, 2320, ⊥2, AirFrance)},
where ⊥1, ⊥2 are values in Var (i.e., nulls). Another solution is

T ′ = {ROUTES(⊥1, Paris, Santiago), INFO_FLIGHT(⊥1, 2320, ⊥1, AirFrance)}.
Yet another solution, but with no nulls, is

T ′′ = {ROUTES(AF 406, P aris, Santiago),

INFO_FLIGHT(AF 406, 2320, 920, AirFrance)}.
Notice that both solutions T ′ and T ′′ seem to be less general than T .This is because T ′ assumes that
the values that witness the existentially quantified variables f# and arr, in the first st-tgd of �st ,

18 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

are the same, while T ′′ assumes that these variables are witnessed by the constants AF406 and 920,
respectively. On the other hand, solution T contains exactly what the specification requires. Thus,
in this case it seems natural to say that one would like to materialize a solution like T rather than
solution T ′ or T ′′, as T is more accurate with respect to S (under M) than T ′ and T ′′. �

How do we define the notion of being as general as any other solution? There appear to be three
different ways of doing so, outlined below.

Solutions that describe all others. A solution T is an instance with nulls, and thus describes the
set Rep(T) of complete solutions. A most general solution must describe all other complete
solutions: that is, we must have

UnivSol1(T) : Rep(T) = {T ′ ∈ SolM(S) | T ′ is over Const}

Solutions that are as general as others. A seemingly slightly weaker condition says that if a solution
T is universal, it cannot describe fewer complete instances than another solution, i.e.,

UnivSol2(T) : Rep(T ′) ⊆ Rep(T) for every T ′ ∈ SolM(S)

Solutions that map homomorphically into others. This more technical, and yet very convenient
definition, is inspired by the algebraic notion of a universal object, that has a homomorphism
into every object in a class. A homomorphism between two instances h : T → T ′ is a mapping
from the domain of T into the domain of T ′, that is the identity on constants, and such that
t̄ = (t1, . . . , tn) ∈ WT implies h(t̄) = (h(t1), . . . , h(tn)) is in WT ′

for all W in Rt. Our third
condition then is:

UnivSol3(T) : there is a homomorphism h : T → T ′ for every T ′ ∈ SolM(S)

So, which definition should we adopt? It turns out that we can take either one, as they are equivalent.

Proposition 2.4 If M is a mapping given by st-tgds, and T is a solution for some source instance, then
conditions UnivSol1(T), UnivSol2(T), and UnivSol3(T) are equivalent.

Proof. Observe that a valuation ν on T is a homomorphism from T into any instance containing
ν(T). Since right-hand-sides of st-tgds are conjunctive queries, which are closed under homomor-
phisms, we have that if T ∈ SolM(S) and T ′ ∈ Rep(T), then T ′ ∈ SolM(S).With this observation,
we now easily prove the result.

UnivSol1(T) ⇒ UnivSol2(T). Assume T ′ is an arbitrary solution, and let T ′′ ∈ Rep(T ′). Then
T ′′ is a solution without nulls, and hence by UnivSol1(T) it belongs to Rep(T), proving
Rep(T ′) ⊆ Rep(T).

2.3. MATERIALIZING TARGET INSTANCES 19

UnivSol2(T) ⇒ UnivSol3(T). Let T ′ ∈ SolM(S), and let ⊥1, . . . , ⊥n enumerate nulls in T ′. Let
c1, . . . , cn be elements of Const that do not occur in T ′, and let T ′′ be obtained from T ′ by
replacing each ⊥i with ci , for i ≤ n. Then T ′′ ∈ Rep(T ′) and hence T ′′ ∈ Rep(T). Take a val-
uation ν witnessing T ′′ ∈ Rep(T) and change it into a homomorphism by setting h(⊥) = ⊥i

whenever ν(⊥) = ci , and otherwise letting h coincide with ν. Then clearly h is a homomor-
phism from T to T ′.

UnivSol3(T) ⇒ UnivSol1(T). If T ′ ∈ Rep(T), we know it is a solution. On the other hand, if T ′
is a solution over constants, then there is a homomorphism h : T → T ′, which must be a
valuation since there are no nulls in T ′. Hence T ′ ∈ Rep(T). This completes the proof of the
proposition. �

Proposition 2.4 justifies the following definition.

Definition 2.5 (Universal solutions). Given a mapping M, a solution T for S under M is a
universal solution if one of UnivSoli(T), for i = 1, 2, 3, is satisfied (and hence all are satisfied). �

Most commonly in the proofs one uses the condition that for every solution T ′ for S, there exists a
homomorphism h : T → T ′.

Example 2.6 Neither solution T ′ nor T ′′ in Example 2.3 is universal. In fact, there is no homo-
morphism h : T ′ → T ; otherwise

h((⊥1, 2320, ⊥1, AirFrance)) = (⊥1, 2320, ⊥2, AirFrance),

and, thus, h(⊥1) = ⊥1 and h(⊥1) = ⊥2, which is a contradiction. Moreover, there is no homomor-
phism h : T ′′ → T ; otherwise

h((AF 406, 2320, 920, AirFrance)) = (⊥1, 2320, ⊥2, AirFrance),

and, thus, h(AF406) = ⊥1 and h(920) = ⊥2, which is a contradiction (because homomorphisms
are the identity on constants). On the other hand, it can be easily seen that T is a universal solution.
�

In addition to being more general than arbitrary solutions, universal solutions possess many good
properties that justify materializing them (as opposed to arbitrary solutions). We shall study these
properties in detail in this chapter. Unfortunately, universal solutions are not a general phenomenon.
Indeed, it can be proved that there is a mapping M and a source instance S, such that S has at
least one solution under M but has no universal solutions (see Example 2.11). Thus, it is necessary
to impose extra conditions on dependencies if one wants to ensure that the existence of solutions
implies the existence of universal solutions. We study this issue in the next section.

20 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

2.3.3 MATERIALIZING UNIVERSAL SOLUTIONS
Summing up, for arbitrary relational mappings we have two negative results: the existence of solutions
problem is undecidable, and the existence of solutions does not always imply the existence of universal
solutions. Thus, one would like to restrict the class of dependencies allowed in mappings, in such a
way that it satisfies the following:

(C1) The existence of solutions implies the existence of universal solutions;

(C2) checking the existence of solutions is a decidable (ideally, tractable) problem; and

(C3) for every source instance that has a solution, at least one universal solution can be computed
(hopefully, in polynomial time).

But before looking for such a class it is convenient to talk about the main algorithmic tool that the
data exchange community has applied in order to check for the existence of solutions; the well-
known chase procedure, that was originally designed to reason about the implication problem for
data dependencies. In data exchange, the chase is used as a tool for constructing a universal solution
for a given source instance. The basic idea is the following. The chase starts with the source instance
S, and then triggers every dependency in �st ∪ �t , as long as this process is applicable. In doing so,
the chase may fail (if firing an egd forces two constants to be equal) or it may never terminate (for
instance, in some cases when the set of tgds is cyclic).

We first define the notion of chase step for an instance S. We distinguish between two kinds
of chase steps:

(tgd) Let d be a tgd of the form ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), such that for some tuple (ā, b̄) of elements
of S it is the case that ϕ(ā, b̄) holds in S, where |ā| = |x̄| and |b̄| = |ȳ|. Then the result of
applying d to S with (ā, b̄) is the instance S′ that extends S with every fact R(c̄) that belongs
to ψ(ā, ⊥̄), where ⊥̄ is a tuple of fresh distinct values in Var such that |⊥̄| = |z̄|.
In that case we write S

d,(ā,b̄)−−−−→ S′.

(egd) Let d be an egd of the form ϕ(x̄) → x1 = x2, and assume that for some tuple ā of elements
in S it is the case that (1) ϕ(ā) holds in S, and (2) if a1 is the element of ā corresponding to x1

and a2 is the element of ā corresponding to x2, then a1 �= a2. We have to consider two cases:

– If both a1 and a2 are constants, the result of applying d to S with ā is “failure”, which is

denoted by S
d,ā−−→ fail.

– Otherwise, the result of applying d to S with ā is the instance S′ such that the following
holds: If one of a1 or a2 is a constant c and the other one is a null ⊥, then S′ is obtained
from S by replacing every occurrence of ⊥ in S by c; if, on the other hand, a1 and a2 are
nulls, then S′ is obtained from S by replacing each occurrence of one of those nulls by

the other one. In both cases we write S
d,ā−−→ S′.

2.3. MATERIALIZING TARGET INSTANCES 21

With the notion of chase step we can now define what is a chase sequence.

Definition 2.7 (Chase). Let � be a set of tgds and egds and S be an instance.

• A chase sequence for S under � is a sequence Si
di ,āi−−→ Si+1 of chase steps, i ≥ 0, such that

S0 = S, each di is a dependency in �, and for each distinct i, j ≥ 0, it is the case that (di, āi) �=
(dj , āj) (that is,di �= dj or āi �= āj).This last technical condition ensures that chase sequences
consist of different chase steps.

• A finite chase sequence for S under M is a chase sequence Si
di ,āi−−→ Si+1, 0 ≤ i < m, for S

under M such that either (1) Sm = fail, or (2) no chase step can be applied to Sm with the
dependencies in �. Technically, (2) means the following: there is no dependency d in �, tuple

ā in S and instance S′ such that Sm
d,ā−−→ S′ and (d, ā) �= (di, āi) for every i ∈ {0, . . . , m − 1}.

If Sm = fail, we refer to this sequence as a failing chase sequence. Otherwise, we refer to it
as a successful chase sequence, and we call Sm its result.

�

In principle there could be different results of the chase, as we have to make some arbitrary choices:
for example, if an egd equates nulls ⊥ and ⊥′, we can either replace ⊥ by ⊥′, or ⊥′ by ⊥. However,
it is not hard to see that if T and T ′ are two results of the chase on S under M, then T and T ′ are
isomorphic, i.e., T can be obtained from T ′ by a renaming of nulls.

Let us now study the application of the chase in a data exchange scenario.Let M be a relational
mapping and S a source instance. A chase sequence for S under M is defined as a chase sequence
for (S, ∅) under �st ∪ �t . Notice that, by definition, any result of a successful chase sequence for S

under M must be an instance of the form (S, T) where T is a solution for S. But not only that, we
show in the following theorem that if (S, T) is the result of a successful chase sequence for S under
M, then T is a universal solution for S under M. Moreover, we also show in the following theorem
that if there exists a failing chase sequence for S under M, then all of its chase sequences are failing,
which further implies that S has no solutions under M.

Theorem 2.8 Let M be a mapping and S a source instance. If there is a successful chase sequence for
S under M with result (S, T), then T is a universal solution for S. On the other hand, if there exists a
failing chase sequence for S under M, then S has no solution.

Proof. In order to prove the theorem we need the following technical, but rather intuitive lemma.
The proof is left as an exercise.

Lemma 2.9 Let S1
d,ā−−→ S2 be a chase step, where S2 �= fail. Assume that S3 is an instance that

satisfies the dependency d and such that there is a homomorphism from S1 into S3. Then there exists a
homomorphism from S2 into S3.

22 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

We now prove the theorem. Assume first that (S, T) is the result of a successful chase sequence
for S under M. Then, as we mentioned above, T is a solution for S. We show next that it is also a
universal solution. Let T ′ be an arbitrary solution for S. Thus, (S, T ′) satisfies every dependency in
�st ∪ �t . Furthermore, the identity mapping is a homomorphism from (S, ∅) into (S, T ′). Applying
Lemma 2.9 at each step of the chase sequence with result (S, T), we conclude that there exists a
homomorphism h : (S, T) → (S, T ′). Further, h is also a homomorphism from T into T ′.

Assume, on the other hand, that there is a failing chase sequence for S under M, and that the

last chase step in that sequence is (S, T)
d,ā−−→ fail. Thus, d is an egd of the form ϕ(x̄) → x1 = x2,

ϕ(ā) holds in (S, T), and if ai is the element corresponding to xi in ā, i ∈ [1, 2], then a1 and a2

are constants and a1 �= a2. Assume, for the sake of contradiction, that S has a solution T ′. As in
the previous case, it can be proved (with the help of Lemma 2.9) that there is a homomorphism
h from T to T ′. Thus, ϕ(h(ā)) holds in T ′, and h(a1) = a1 and h(a2) = a2 are distinct constants.
This contradicts the fact that T ′ satisfies d. �

The result of a successful chase sequence on a source instance S is usually called a canonical universal
solution for S. Since for the chase as defined in this chapter this result is unique up to isomorphism,
in what follows we refer to it as the canonical universal solution for S.

Example 2.10 (Example 2.3 continued) It is clear that the result of the chase for S under M is
T . Thus, from Theorem 2.8, T is a universal solution for S. �

But the chase as a tool for data exchange has one big drawback: nothing can be concluded about
the existence of solutions in the case when the chase does not terminate. The next example shows
different applications of the chase procedure.

Example 2.11 Let M be a mapping such that the source schema consists of a binary relation E, the
target schema consists of binary relations G and L, and �st consists of the st-tgd ϕ = E(x, y) →
G(x, y). Assume first that �t consists of the tgd θ1 = G(x, y) → ∃z L(y, z), and let S be the source
instance E(a, b).The chase starts by firing ϕ and, thus, by populating the target with the fact G(a, b).
In a second stage, the chase realizes that θ1 is being violated, and thus, θ1 is triggered. The target
is then extended with a fact L(b, ⊥), where ⊥ is a fresh null value. At this stage, no dependency is
being violated, and thus, the chase stops with result T = {G(a, b), L(b,⊥)}. We conclude that T

is a universal solution for S.
Assume now that �t is extended with the tgd θ2 = L(x, y) → ∃z G(y, z). Clearly, T does

not satisfy θ2 and the chase triggers this tgd. This means that a fact G(⊥, ⊥1) is added to the target,
where ⊥1 is a fresh null value. But θ1 is now being violated again, and a new fact L(⊥1, ⊥2), where
⊥2 is a fresh null value, will have to be added. It is clear that this process will continue indefinitely,
and thus, that the chase does not terminate. Notice that in this case T = {G(a, b), L(b, a)} is a
solution for S. It can be proved, on the other hand, that S does not have universal solutions. (We
leave this as an exercise to the reader).

2.3. MATERIALIZING TARGET INSTANCES 23

(G, 1) (G, 2)

(L, 2)(L, 1)

� �

(G, 1) (G, 2)

(L, 1) (L, 2)

�

(b)(a)

Figure 2.1: Dependency graphs of (a) {θ1} and (b) {θ1, θ2}.

Assume finally that �t consists of the egd α = G(x, y) → x = y. Then the chase for S fails,
since after populating the target instance with the fact G(a, b), the egd α forces to equate the
constants a and b. Notice that, in this case, S has no solution. �

As we have seen, the main problem with the application of the chase is non-termination.This
happens, for instance, when the set of tgds allows for cascading of null creation during the chase. We
show next that by restricting this cascading it is possible to obtain a meaningful class of mappings,
for which the chase is guaranteed to terminate; further, it does so in at most polynomially many
steps. It will follow that this class of mappings satisfies our desiderata expressed above as conditions
C1, C2 and C3.

Assume that � is a set of tgds over Rt. We construct the dependency graph of � as follows.
The nodes (positions) of the graph are all pairs (R, i), where R is a relation symbol in Rt of arity
n and i ∈ {1, . . . , n}. Then we add edges as follows. For every tgd ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) in
�, and for every variable x mentioned in x̄ that occurs in the i-th attribute of relation R in ϕ, do
the following:

• if x occurs in the j-th attribute of relation T in ψ , then add an edge from (R, i) to (T , j) (if
the edge does not already exist); and

• for every existentially quantified variable in ∃z̄ ψ(x̄, z̄) that occurs in the j-th attribute of
relation T in ψ , add an edge labeled
 from (R, i) to (T , j) (if the edge does not already exist).

Finally, we say that � is weakly acyclic if the dependency graph of � does not have a cycle going
through an edge labeled
.

Example 2.12 (Example 2.11 continued) Let θ1 and θ2 be as in Example 2.11. As it is shown
in Figure 2.1, the set {θ1} is weakly acyclic, while the set {θ1, θ2} is not as there is a cycle in the
dependency graph of these dependencies going through an edge labeled
. �

Interesting classes of weakly acyclic sets of tgds include the following:

24 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

• Sets of tgds without existential quantifiers, and

• acyclic sets of inclusion dependencies.

The intuition behind this notion is as follows. Edges labeled
 keep track of positions (R, i) for which
the chase will have to create a fresh null value every time the left hand side of the corresponding
tgd is triggered. Thus, a cycle through an edge labeled
 implies that a fresh null value created in
a position at a certain stage of the chase may determine the creation of another fresh null value,
in the same position, at a later stage. Therefore, sets of tgds that are not weakly acyclic may yield
non-terminating chase sequences (e.g., the set {θ1, θ2}). On the other hand, it can be proved that
the chase always terminates for mappings with a weakly acyclic sets of tgds. Further, in this case, the
chase for S terminates in at most polynomially many stages.

Theorem 2.13 Let M = (Rs, Rt, �st , �t) be a fixed relational mapping, such that �t is the union of
a set of egds and a weakly acyclic set of tgds. Then there exists a polynomial p such that the length of every
chase sequence for a source instance S under M is bounded by p(‖S‖).

Proof. For the sake of simplicity, we prove the theorem in the absence of egds. The addition of egds
does not change the argument of the proof in any fundamental way.

First of all, with each node (V , i) in the dependency graph of �t , we associate its rank, denoted
by rank(V, i), which is the maximum number of special edges in any path in the dependency graph
G of �st that ends in (V , i). Since �st is weakly acyclic, the rank of each node in G is finite. Further,
it is clear that the maximum rank r of a node in G is bounded by the number m of nodes in G itself.
Notice that m (and, thus, r) is a constant since it corresponds to the total number of attributes in
the schema Rt (which is assumed to be fixed).

Let us partition the nodes of G into sets N0, N1, . . . , Nr such that (V , i) belongs to Nj if and
only if rank(V, i) = j (0 ≤ j ≤ r). To prove the theorem, we need the following technical result.
(The proof is left as an exercise).

Claim 2.14 For each j ∈ {1, . . . , r}, there exists a polynomial pj such that the following holds: Let S

be a source instance and T be any target instance that is obtained from S by a sequence of chase steps using
the tgds in �st ∪ �t . Then the number of distinct elements (i.e., constants and nulls) that occur in T at
positions that are restricted to be in Nj is bounded by pj (‖S‖).

Now it follows from the claim that there exists a polynomial p′, that only depends on M, such
that the maximum number of elements that occur in a solution T for S under M, at a single
position, is bounded by p′(‖S‖). Thus, the total number of tuples that can exist in one relation in
T is at most p′(‖S‖)m (since each relation symbol in Rt can have arity at most m). Thus, the total
number of tuples in T is bounded by ‖M‖ · p′(‖S‖)m. This is polynomial in ‖S‖ since M is fixed.
Furthermore, at each chase step with a tgd at least one tuple is added, which implies that the length

2.3. MATERIALIZING TARGET INSTANCES 25

of any chase sequence is bounded by ‖M‖ · p′(‖S‖)m; hence, we can take p(x) = ‖M‖ · p′(x)m.
This completes the proof. �

This good behavior also implies the good behavior of this class of mappings with respect to data
exchange. Indeed, as an immediate corollary to Theorems 2.8 and 2.13, we obtain the following:

Corollary 2.15 Let M = (Rs, Rt, �st , �t) be a fixed relational mapping, such that �t is the union
of a set of egds, and a weakly acyclic set of tgds. Then the existence of solutions for M can be checked in
polynomial time. Further, in case that solutions exist, a universal solution can be computed in polynomial
time.

Thus, the class of mappings with a weakly acyclic set of tgds satisfies conditions C1, C2, and C3, as
defined above, and therefore, it constitutes a good class for data exchange according to our definition.
In this case, using the chase the canonical universal solution that can be constructed in polynomial
time (if a solution exists at all).

Let us finally mention that there are interesting classes of dependencies for which the problem
of checking for the existence of solutions is trivial. For instance, if mappings do not have egds then
source instances always have (universal) solutions (under the condition that �t consists of a weakly
acyclic set of tgds). In particular, for mappings without target dependencies, it is the case that every
source instance has at least one universal solution.

For mappings without target dependencies, the canonical universal solution can always be
computed in Logspace. But, as next proposition shows, the complexity increases in the presence of
target dependencies (we leave both facts as exercises to the reader):

Proposition 2.16 There exists a relational mapping M = (Rs, Rt, �st , �t), such that �t consists of
a set of tgds without existentially quantified variables, and such that the problem of checking for a given
source instance S, whether a fact R(t̄) belongs to the canonical universal solution for S, is Ptime-complete.

On the other hand, the problem of checking for the existence of solutions is Ptime-complete already
for mappings whose set of target dependencies consists of a single egd (also left as an exercise to
the reader). This means that both the problem of computing the canonical universal solution for
mappings with tgds but without egds, and checking for the existence of solutions for mappings with
egds but without tgds, are regarded as inherently sequential, and its performance cannot be improved
considerably using parallel algorithms.

26 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

2.3.4 CORES
We start this section with an example.

Example 2.17 (Example 2.1 continued) Consider the source instance

S = {FLIGHT(Paris, Amsterdam, KLM, 1410),

FLIGHT(Paris, Amsterdam, KLM, 2230),

GEO(Paris, F rance, 2M)}.
It is not hard to see that the canonical universal solution T for S is

{ROUTES(⊥1, P aris, Amsterdam), ROUTES(⊥3, P aris, Amsterdam),

INFO_FLIGHT(⊥1, 1410, ⊥2, KLM), INFO_FLIGHT(⊥3, 2230, ⊥4, KLM),

SERVES(KLM, Paris, F rance,⊥5), SERVES(KLM, Paris, F rance,⊥6)}.
Now consider the instance T ∗ that is obtained from T by removing tuple
SERVES(KLM, Paris, F rance,⊥6). Then T ∗ is also a solution for S, and, moreover, there
are homomorphisms h : T → T ∗ and h∗ : T ∗ → T . It follows, therefore, that T ∗ is also a universal
solution for S. �

We can draw an interesting conclusion from this example: among all possible universal solutions,
the canonical universal solution is not necessarily the smallest (as T ∗ is strictly contained in T).
Moreover, in the example, T ∗ is actually the smallest universal solution (up to isomorphism).

The first natural question is whether there is always a unique smallest universal solution. As
we will see later, this question has a positive answer. Further, some authors have argued that this
smallest universal solution is the “best” universal solution since it is the most economical one in
terms of size, and that this solution should be the preferred one at the moment of materializing a
solution. The whole issue is then how to characterize this smallest universal solution.

It can be shown that the smallest universal solution always coincides with the core of the
universal solutions. The core is a concept that originated in graph theory; here we present it for
arbitrary instances.

Definition 2.18 (Core). Let T be a target instance with values in Const ∪ Var, and let T ′ be a
sub-instance1 of T . We say that T ′ is a core of T if there is a homomorphism from T to T ′ (recall
that homomorphisms have to be the identity on constants), but there is no homomorphism from T ′
to a proper sub-instance of itself. �

The following are well known facts about the cores:

1. every instance has a core, and

1That is, the domain of T ′ is contained in the domain of T and V T ′ ⊆ V T , for every V in Rt . If one of the inclusions is proper,
we refer to T ′ as a proper sub-instance of T .

2.3. MATERIALIZING TARGET INSTANCES 27

2. all cores of a given instance are isomorphic, i.e., the same up to a renaming of nulls.

Thus,we can talk about the core of an instance.To give an intuition behind the second fact,assume that
T1 and T2 are cores of T , and that hi : T → Ti are homomorphisms, for i = 1, 2.Then h1 restricted
to T2 cannot map it to a substructure of T1, for otherwise h1 ◦ h2 would be a homomorphism from
T to a substructure of the core T1. Likewise, h2 restricted to T1 cannot map it to a substructure of
T2. Hence, these restrictions are one-to-one homomorphisms between T1 and T2. From here, it is
easy to derive that T1 and T2 are isomorphic.

The next result summarizes some of the good properties of cores in data exchange.

Proposition 2.19 Let M = (Rs, Rt, �st , �t) be a mapping, such that �st consists of a set of st-tgds
and �t consists of a set of tgds and egds.

1. If S is a source instance and T is a universal solution for S, then the core of T is also a universal
solution for S.

2. If S is a source instance for which a universal solution exists, then every universal solution has the
same core (up to a renaming of nulls), and the core of an arbitrary universal solution is precisely the
smallest universal solution.

Example 2.20 (Example 2.17 continued) The solution T ∗ is the core of the universal solutions
for S since there is a homomorphism from T to T ∗, but there is no homomorphism from T ∗ to a
proper sub-instance of itself. �

In conclusion, the core of the universal solutions has good properties for data exchange.This naturally
raises the question about the computability of the core. As we have mentioned, the chase yields a
universal solution that is not necessarily the core of the universal solutions, so different techniques
have to be applied in order to compute this solution.

It is well-known that computing the core of an arbitrary graph is a computationally intractable
problem. Indeed, we know that a graph G is 3-colorable iff there is a homomorphism from G to
K3, the clique of size 3. Thus, G is 3-colorable iff the core of the disjoint union of G and K3 is K3

itself. This shows that there is a polynomial time reduction from the problem of 3-colorability into
the problem of computing the core of a graph. It follows that the latter is NP-hard. In fact, checking
if a fixed graph G0 is the core of an input graph G is an NP-complete problem; if both G and G0

are inputs, then the complexity is even higher (more precisely, in the class DP, studied in complexity
theory).

However, in data exchange, we are interested in computing the core of a universal solution
and not of an arbitrary instance. And the intractability of the general problem does not mean bad
news in our case. In fact, we are about to see that computing the core of the universal solutions under
the class of mappings with a weakly acyclic set of tgds is a tractable problem.

28 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

Let us consider first a simple class of relational mappings; those without tgds. Then there is
a simple greedy algorithm that computes the core of the universal solutions in case that a universal
solution exists. It proceeds as follows. Fix a mapping M = (Rs, Rt, �st , �t) without tgds in �t .

Algorithm 1 ComputeCore(M)
Require: A source instance S

Ensure: If S has a core under M, then T
 is a target instance that is a core for S. Otherwise,
T
 = fail

1: let T be the result of the chase of S under M
2: if T = fail then
3: T
 = fail
4: else
5: T
 := T

6: for all fact R(ā) in T
 do
7: let T
,− be an instance obtained from T
 by removing fact R(ā)

8: if (S, T
,−) satisfies �st then
9: T
 := T
,−

10: end if
11: end for
12: end if

If the chase computing the canonical universal solution does not fail, then the algorithm outputs
the core of the universal solutions for S. Furthermore, this algorithm runs in polynomial time in the
size of S.

Unfortunately, the algorithm described above cannot be easily adapted to more complex
mappings, and more sophisticated techniques have to be developed if one wants to prove that
computation of cores of universal solutions continues being tractable in the presence of tgds. These
techniques are based on the blocks method described below.

Let us assume for the time being that we deal with mappings without target dependencies.
The blocks method relies on the following observation. If T is the canonical universal solution of
a source instance S with respect to a set of st-tgds �st , then the Gaifman graph of the nulls of T

consists of a set of connected components (blocks) of size bounded by a constant c (this constant
depends only on the mapping, that we assume to be fixed). By the Gaifman graph of nulls of T we
mean the graph whose nodes are the nulls of T , such that two nulls ⊥1, ⊥2 are adjacent iff there is
a tuple in some relation of T that mentions both ⊥1 and ⊥2.

A crucial observation is that checking whether there is a homomorphism from T into an
arbitrary instance T ′ can be done in polynomial time. The justification is that this problem boils
down to the problem of whether each block of T has a homomorphism into T ′. The latter can be
solved in polynomial time since the size of each block is bounded by c. It follows that computing

2.4. QUERY ANSWERING 29

the core of the canonical universal solution T can be done in polynomial time: It is sufficient to
check whether there is a homomorphism h : T → T such that the size of the image of T under h

is strictly less than the size of T . Then we replace T by h(T), and iteratively continue this process
until reaching a fixed-point.

The blocks method was also extended to the case when �t consists of a set of egds.There is an
extra difficulty in this case: The property mentioned above, the bounded block-size in the Gaifman
graph of the canonical universal solution T of a source instance S, is no longer true in the presence
of egds. This is because the chase, when applied to egds, can equate nulls from different blocks, and
thus, create blocks of nulls of arbitrary size. This problem is solved by a surprising rigidity lemma
stating the following: Let T be the canonical universal of a source instance with respect to a set of
st-tgds �st . Further, let T ′ be the target instance that is obtained from T by chasing with the egds
in �t . Then if two nulls ⊥1 and ⊥2 in different blocks of T are replaced by the same null ⊥ in T ′,
then ⊥ is rigid. That is, if h : T ′ → T ′ is a homomorphism then h(⊥) = ⊥, and thus, T ′ has the
bounded block-size property if we treat those nulls as constants.

The situation is much more complex in the presence of tgds. This is because the canonical
universal solution T for a source instance S does not have the bounded block-size property, and in
addition, it is no longer true that equated nulls are rigid. A refined version of the blocks method
has been developed; it was used to show that computing cores of universal solutions for mappings
whose set of target dependencies consists of egds and a weakly acyclic set of tgds can be done in
polynomial time.

Theorem 2.21 Let M = (Rs, Rt, �st , �t) be a fixed relational mapping, such that �t consists of a set
of egds and a weakly acyclic set of tgds. There is a polynomial-time algorithm that for every source instance
S, checks whether a solution for S exists, and if that is the case, computes the core of the universal solutions
for S.

2.4 QUERY ANSWERING
2.4.1 ANSWERING FIRST-ORDER AND CONJUNCTIVE QUERIES
Recall that in the context of data exchange we are interested in computing the certain answers of
a query. These are formally defined as follows. Let M be a relational mapping, Q a query in some
query language over the schema Rt, and S a source instance. Then the set of certain answers of Q

with respect to S under M is

certainM(Q, S) =
⋂

{Q(T) | T ∈ SolM(S)}.
We omit M if it is clear from the context. If Q is a query of arity 0 (a Boolean query), then
certainM(Q, S) = true iff Q is true in every solution T for S; otherwise, certainM(Q, S) = false.

Example 2.22 (Example 2.3 continued) Consider again the source instance

30 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

S = {FLIGHT(Paris, Santiago, AirF rance, 2320)}.
The certain answers of the query Q = ROUTES(x, y, z) with respect to S is the empty set. On the
other hand, certainM(Q′, S) = {(Paris, Santiago)}, for Q′ = ∃xROUTES(x, y, z). �

Given a mapping M and a query Q over Rt, the problem of computing certain answers for Q under
M is defined as follows:

Problem: Certain answers for Q and M.
Input: A source instance S and a tuple t̄ of elements from S.
Question: Does t̄ belong to certainM(Q, S)?

Evaluating the certain answers of a query involves computing the intersection of a (potentially) infi-
nite number of sets.This strongly suggests that computing certain answers for arbitrary FO queries is
an undecidable problem. We can prove this with the help of the mapping M = (Rs, Rt, �st , �t) in
Theorem 2.2. Let α be the FO formula that is obtained by taking the conjunction of all dependencies
in �t , and let M′ be the mapping that is obtained from M by removing all target dependencies in
�t . Then for every source instance S, we have

certainM′(¬α, S) = false ⇔ ∃T : T ∈ SolM′(S) and T �|= ¬α

⇔ ∃T : T ∈ SolM′(S) and T |= α

⇔ ∃T : T ∈ SolM(S)

Thus, we obtain the following from Theorem 2.2.

Proposition 2.23 There exists an FO query Q and a mapping M = (Rs, Rt, �st , �t), such that
�t = ∅ and the problem of computing certain answers for Q and M is undecidable.

This does not preclude, however, the existence of interesting classes of queries for which the problem
of computing certain answers is decidable, and even tractable. Indeed, next theorem shows that this
is the case for the class of unions of conjunctive queries. Recall that a conjunctive query is an FO
formula of the form ∃x̄ ϕ(x̄, ȳ), where ϕ(x̄, ȳ) is a conjunction of atoms.

Theorem 2.24 Let M = (Rs, Rt, �st , �t) be a mapping, such that �t consists of a set of egds and
a weakly acyclic set of tgds, and let Q be a union of conjunctive queries. Then the problem of computing
certain answers for Q under M can be solved in polynomial time.

This is a very positive result since unions of conjunctive queries are very common database queries –
they correspond to the select-project-join-union fragment of relational algebra and to the core of the
standard query language for database systems, SQL.

Theorem 2.24 can be easily proved when we put together the following three facts:

2.4. QUERY ANSWERING 31

1. Unions of conjunctive queries are preserved under homomorphisms; that is, if Q is a union of
conjunctive queries over Rt, T and T ′ are two target instances such that there is a homomor-
phism from T to T ′, and the tuple ā of constants belongs to the evaluation of Q over T , then
ā also belongs to the evaluation of Q over T ′;

2. every universal solution can be homomorphically mapped into any other solution, and

3. FO queries, and in particular, unions of conjunctive queries, have polynomial time data com-
plexity.

The actual computation of certain answers is based on the well known concept of naïve evaluation.
This is a way of evaluating queries over databases that contain nulls. Under naïve evaluation, two
steps are performed:

• First, a given query Q is evaluated over an instance T with nulls as if nulls were constants.
That is, if ⊥, ⊥′ are nulls and c is a constant, then conditions comparing nulls or nulls and
constants are evaluated as follows: ⊥ = c is false, ⊥ = ⊥′ is false, and ⊥ = ⊥ is true.

• Second, from the result of the first step, one eliminates all tuples containing nulls. The end
result is denoted by Q↓(T).

For example, if we have facts R(1, ⊥) and S(⊥, 2), S(⊥,⊥′), then the naïve evaluation of the
query Q = ∃z R(x, z) ∧ S(z, y) results in one tuple (1, 2). Indeed, in the first step one takes the
join of R and S followed by the projection, which yields two tuples: (1, 2) and (1, ⊥′); the second
step eliminates the tuple containing ⊥′.

Thus, in order to compute the certain answers to a union of conjunctive queries Q with respect
to a source instance S, one can use the following procedure. Recall that M is a mapping such that
�t consists of a set of egds and a weakly acyclic set of tgds, and let Q be a union of conjunctive
queries.

Algorithm 2 ComputeCertainAnswers(Q,M)
Require: A source instance S

Ensure: If SolM(S) �= ∅, then CA is the set of certain answers for Q over S under M. Otherwise,
CA = fail

1: let T be the result of the chase of S under M
2: if T = fail then
3: CA := fail
4: else
5: CA := Q↓(T)

6: end if

32 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

The previous observations imply that

certainM(Q, S) = Q↓(T). (2.1)

In fact, since Q is a union of conjunctive queries,T can be taken to be any universal solution, and (2.1)
remains true. In particular, if in the above algorithm we compute the core instead of the canonical
universal solution, the output of the algorithm is still the set of certain answers.

There is a natural question that arises at this point: What happens if we extend conjunctive
queries with a restricted form of negation, e.g., inequalities? Unfortunately, even this slight extension
of the language leads to intractability of the problem of computing certain answers, as the next
theorem shows.

Theorem 2.25

1. Let M be a mapping such that �t consists of a set of egds and a weakly acyclic set of tgds, and let Q

be a conjunctive query with inequalities. The problem of computing certain answers for Q and M
is in coNP.

2. There is a Boolean conjunctive query Q with inequalities and a LAV mapping M, such that the
problem of computing certain answers for Q and M is coNP-hard.

Proof. We first prove (1). We show that if there is a solution T for a source instance S such that
t̄ �∈ Q(T), then there is a solution T ′ of polynomial size such that t̄ �∈ Q(T ′). Suppose that T is a
solution for S such that t̄ �∈ Q(T). Let Tcan be the canonical universal solution for S. (Notice that
Tcan exists since S has at least one solution). Then there is a homomorphism h : Tcan → T . We
denote by h(Tcan) the homomorphic image of T under h (notice that h(Tcan) is a solution for S). We
claim that t̄ �∈ Q(h(Tcan)). Assume otherwise; then t̄ ∈ Q(h(Tcan)). But h(Tcan) is a sub-instance of
T , and clearly conjunctive queries with inequalities are preserved under sub-instances. We conclude
that t̄ ∈ Q(T), which is a contradiction. Further, notice that Tcan is of polynomial size, and, thus,
h(Tcan) is also a polynomial size.

With this observation, it is easy to construct a coNP algorithm for the problem of certain
answers of Q and M. In fact, a coNP algorithm for checking t̄ ∈ certainM(Q, S) is the same as an
NP algorithm for checking t̄ �∈ certainM(Q, S). By the above observation, for the latter, it simply
suffices to guess a polynomial size instance T and check, in polynomial time, that T is a solution,
and that t̄ �∈ Q(T).

We now prove (2). The LAV mapping M = (Rs, Rt, �st) is as follows. The source schema
Rs consists of two relations: A binary relation P and a ternary relation R. The target schema Rt also
consists of two relations: A binary relation U and a ternary relation V . Further, �st is the following
set of source-to-target dependencies:

P(x, y) → ∃z(U(x, z) ∧ U(y, z))

R(x, y, z) → V (x, y, z)

2.4. QUERY ANSWERING 33

The Boolean query Q is defined as:

∃x1∃y1∃x2∃y2∃x3∃y3(V (x1, x2, x3) ∧ U(x1, y1) ∧
U(x2, y2) ∧ U(x3, y3) ∧ x1 �= y1 ∧ x2 �= y2 ∧ x3 �= y3).

Next, we show that the problem of certain answers for Q and M is coNP-hard.
The coNP-hardness is established from a reduction from 3SAT to the complement of the

problem of certain answers for Q and M. More precisely, for every 3CNF propositional formula ϕ,
we construct in polynomial time an instance Sϕ of Rs such that ϕ is satisfiable iff certainM(Q, Sϕ) =
false.

Given a propositional formula ϕ ≡ ∧
1≤j≤m Cj in 3CNF, where each Cj is a clause, let Sϕ

be the following source instance:

• The interpretation of P in Sϕ contains the pair (q, ¬q), for each propositional variable q

mentioned in ϕ; and

• the interpretation of R in Sϕ contains all tuples (α, β, γ) such that for some j ∈ {1, . . . , m},
Cj = (α ∨ β ∨ γ).

Clearly, Sϕ can be constructed in polynomial time from ϕ.
It is not hard to see that the canonical universal solution T for Sϕ is as follows, where we denote

by ⊥q the null generated by applying the st-tgd P(x, y) → ∃z(U(x, z) ∧ U(y, z)) to P(q, ¬q):

• The interpretation of the relation U in T contains the tuples (q, ⊥q) and (¬q, ⊥q), for each
propositional variable q mentioned in ϕ; and

• the interpretation of the relation V in T is just a copy of the interpretation of the relation R

in Sϕ .

We leave as an exercise to the reader to prove that ϕ is satisfiable iff certainM(Q, Sϕ) = false.This
finishes the proof of the theorem. �

2.4.2 QUERY REWRITING
As we have seen, a desirable property for query answering in data exchange is being able to compute
the certain answers to a query Q using a materialized solution. But notice that the query one evaluates
over such a materialized solution is not necessarily the original query Q but rather a query obtained
from Q, or, in other words, a rewriting of Q. The key property of such a rewriting Q′ is that, for
each given source S and materialized target T , we have

certainM(Q, S) = Q′(T). (2.2)

Comparing this with (2.1), we see that Q↓ was a rewriting for unions of conjunctive queries, over
universal solutions.

34 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

In general, the rewriting Q′ of a query Q need not be a query in the same language as Q. But
usually, one looks for rewritings in languages with polynomial time data complexity (e.g., FO). In
this chapter, we deal with FO rewritings.

We now define the notion of rewritings precisely. For that, we shall use a unary predicate
C that distinguishes constants in target instances. The extension of the target schema Rt with this
predicate C is denoted by RC

t . For the rest of this section, we only deal with mappings without target
dependencies (in particular, for avoiding the problem of the existence of universal solutions).

Definition 2.26 (Rewritings). Assume that L is a query language. Let M be a mapping without
target dependencies and let Q be a query over the target schema Rt. We say that Q is FO-rewritable
over the canonical universal solution (resp. the core) under M, if there is a FO-query Q′ over RC

t such
that certainM(Q, S) = Q′(T), for every source instance S with canonical universal solution (resp.
core) T . �

The following facts are known about rewritings in data exchange. The first two follow from what
we have already mentioned.

• Unions of conjunctive queries are FO-rewritable under any mapping M without target de-
pendencies, both over the canonical universal solution and the core. Indeed, we have seen
that the rewriting of a union of conjunctive queries Q(x1, . . . , xm) is the query Q↓, which is
obtained by evaluating Q and only keeping tuples without nulls. It can therefore be expressed
as

Q(x1, . . . , xm) ∧ C(x1) ∧ · · · ∧ C(xm).

Notice that this rewriting is a union of conjunctive queries as well, is independent of the
mapping, and can be constructed in polynomial time from Q(x1, . . . , xm).

• There exists a Boolean conjunctive query Q with a single inequality and a LAV mapping M,
such that Q is not FO-rewritable under M, both over the canonical universal solution and
over the core.

• It is undecidable whether an FO query admits an FO-rewriting over the canonical universal
solution or the core. This follows easily from Trakhtenbrot’s theorem.

What is the relationship between rewritability over the canonical universal solution and over the
core? The following result gives a precise answer to this question.

Theorem 2.27 For mappings without target constraints �t , the following hold:

1. Every FO query Q that is FO-rewritable over the core is also rewritable over the canonical universal
solution.

2. There is a mapping M and an FO query Q that is FO-rewritable over the canonical universal
solution but not over the core.

2.5. SUMMARY 35

Thus, there is the following tradeoff in choosing the canonical universal solution or the core as the
preferred solution in data exchange:

• the core allows the most compact materialization among all possible universal solutions; how-
ever,

• this comes at the cost of losing the capability for FO-rewriting of some queries.

2.5 SUMMARY
• Without putting restrictions on schema mappings, all the key computational tasks are unde-

cidable in data exchange. Hence, one usually deals with the mappings in which:

1. the relationship between the source and the target schemas is specified by source-to-target
tuple generating dependencies (st-tgds), and

2. the target constraints are tuple-generating and equality-generating dependencies (tgds
and egds).

• Even in this setting, the problem of checking whether a given source admits a solution is
undecidable.Hence,one usually imposes a further acyclicity condition on the target constraints.

• With this condition (called weak acyclicity), solutions – if they exist – can be constructed in
polynomial time by the chase procedure. If the chase fails, it means that there are no solutions.

• Solutions constructed by the chase are more general than others – they are so-called universal
solutions. There are several equivalent ways of stating that a solution is more general than
others. The result of the chase is usually referred to as the canonical universal solution.

• Certain answers for an arbitrary conjunctive query Q (or unions of conjunctive queries) can
be found if one has an arbitrary universal solution: this is done by means of answering another
query, the rewriting of Q, over the solution.

• There is a unique minimal universal solution, called the core. It can be constructed in polyno-
mial time under the weak acyclicity assumption, although the algorithm is quite complicated.
A simpler algorithm exists if target constraints contain only egds.

• Any relational calculus query that is rewritable over the core is rewritable over the canonical
universal solution, but not vice versa.

2.6 BIBLIOGRAPHICAL COMMENTS
The basics of data exchange were described by Fagin et al. [2005a]. That paper presented the notion
of schema mappings as we use them, adapted the chase procedure to the data exchange setting,
and introduced universal solutions (using the definition based on homomorphisms). The central
notion of weak acyclicity was first formulated by Deutsch and Popa, and later independently used

36 2. RELATIONAL MAPPINGS AND DATA EXCHANGE

by Fagin et al. [2005a], and Deutsch and Tannen [2003]. Given the role of chase in data exchange,
finding conditions for its termination is an active research topic. Recent results show that chase
can be pushed beyond weak acyclicity [Deutsch et al., 2008; Marnette, 2009; Meier et al., 2009].
Complexity of the key tasks associated with data exchange was studied by Kolaitis et al. [2006], who
also studied the combined complexity of checking for the existence of solutions (i.e., the complexity
of the problem when the mapping itself is considered to be part of the input).

The notion of core originates in graph theory [P. Hell and J. Nešetřil, 2004]. Its usefulness
in data exchange was shown by Fagin et al. [2005b], who gave the simple algorithm for computing
cores. The polynomial-time algorithm for the general case was developed by Gottlob and Nash
[2008].

The algorithm for answering conjunctive queries based on naive evaluation
[Imielinski and Lipski, 1984] was given by Fagin et al. [2005a]. While extension of this al-
gorithm to full FO is impossible, some limited form of negation can be used in queries
[Arenas et al., 2009a]. The notions of rewritings over the core and the canonical universal solution
were studied by Fagin et al. [2005a,b]; the result showing the exact relationship between them is by
Arenas et al. [2004].

It was also shown by Arenas et al. [2004] that query answering in data exchange may exhibit
unnatural behavior. It was argued by Libkin [2006] that this is due to the openness of solutions to
adding new facts. A different semantics for data exchange based on closed world assumption was
proposed [Libkin, 2006] and shown to avoid some of the unwanted behavior noticed by Arenas et al.
[2004]; further extensions were given by Hernich and Schweikardt [2007], Libkin and Sirangelo
[2008], and Afrati and Kolaitis [2008],who considered aggregate queries in a data exchange scenario.

An approach to justifying classes of mappings based on their structural properties was de-
veloped by ten Cate and Kolaitis [2009]. An extension of schema mappings that works in a bi-
directional way was given by Fuxman et al. [2006].

37

C H A P T E R 3

Metadata Management
3.1 INTRODUCTION

In the last few years, a lot of attention has been paid to the development of solid foundations for the
problem of exchanging data using schema mappings. These developments are a first step towards
providing a general framework for exchanging information, but they are definitely not the last one.
As pointed out in the literature, many information system problems involve not only the design
and integration of complex application artifacts, but also their subsequent manipulation. This has
motivated the need for the development of a general infrastructure for managing schema mappings.

A schema mapping is a specification that describes how data from a source schema is to be
mapped to a target schema. As such, a schema mapping provides metadata. Thus, the problem of
managing schema mappings has been called metadata management in the literature.

A metadata management framework, called model management, has been recently pro-
posed. In this framework, mappings are usually specified in a logical language, and high-level
algebraic operators such as match, merge, compose and invert are used to manipulate them. For
instance, next we show the intuition behind the composition operator, and show how it can be
used in practice to solve some metadata management problems. Let M12 be the mapping given
in Chapter 1, which is used to translate information from a source schema R1, consisting of re-
lations GEO(city, country, population) and FLIGHT(source, destination, airline,
departure), into a target schema R2, consisting of relations ROUTES(flight#, source,
destination), INFO_FLIGHT(flight#, departure_time, arrival_time, airline) and
SERVES(airline, city, country, phone). Mapping M12 is specified by using the logical
language of source-to-target tuple-generating dependencies (st-tgds):

FLIGHT(src, dest, airl, dep) −→
∃f# ∃arr (ROUTES(f#, src, dest) ∧ INFO_FLIGHT(f#, dep, arr, airl))

FLIGHT(city, dest, airl, dep) ∧ GEO(city, country, popul) −→
∃phone SERVES(airl, city, country, phone)

FLIGHT(src, city, airl, dep) ∧ GEO(city, country, popul) −→
∃phone SERVES(airl, city, country, phone)

Assume that schema R2 has to be updated into a new target schema R3 consisting of the following
relations:

• INFO_AIRLINE(airline, city, country, phone, year)

38 3. METADATA MANAGEMENT

INFO_AIRLINE has information about cities served by airlines: for example, it may have a tu-
ple (AirFrance, Santiago, Chile, 5550000, 1982), indicating that AirFrance serves
Santiago, Chile, since 1982, and its office there can be reached at 555-0000.

• INFO_JOURNEY(flight#, source, departure_time, destination,
arrival_time, airline)

This relation has information about routes served by several airlines. For each flight, this
relation stores the flight number (flight#), source, departure time, destination, arrival time
and the name of the airline.

Furthermore, assume that the relationship between R2 and the new target schema R3 is given by a
mapping M23, which is specified by the following source-to-target dependencies:

SERVES(airl, city, country, phone) −→
∃year INFO_AIRLINE(airl, city, country, phone, year)

ROUTES(f#, src, dest) ∧ INFO_FLIGHT(f#, dep, arr, airl) −→
INFO_JOURNEY(f#, src, dep, dest, arr, airl)

Given that R2 has to be replaced by the new target schema R3, the mapping M12 from schema R1
into schema R2 also has to be replaced by a new mapping M13, which specifies how to translate
data from R1 into the new target schema R3. Thus, the problem in this scenario is to compute a
new mapping M13 that represents the application of mapping M12 followed by the application
of mapping M23. But given that mappings are binary relations from a semantic point of view, this
problem corresponds to the computation of the composition of mappings M12 and M23. In fact,
the composition operator for schema mappings exactly computes this, and in this particular example,
returns a mapping M13 specified by the following source-to-target dependencies:

FLIGHT(src, dest, airl, dep) −→
∃f# ∃arr INFO_JOURNEY(f#, src, dep, dest, arr, airl)

FLIGHT(city, dest, airl, dep) ∧ GEO(city, country, popul) −→
∃phone ∃year INFO_AIRLINE(airl, city, country, phone, year)

FLIGHT(src, city, airl, dep) ∧ GEO(city, country, popul) −→
∃phone ∃year INFO_AIRLINE(airl, city, country, phone, year)

In this chapter, we study two of the operators that have been identified as crucial for the development
of a metadata management framework, namely the composition and inverse operators. Specifically,
we concentrate on the following issues for each of these notions: the definition of its semantics, the
study of the language needed to express it and the algorithmic issues associated to the problem of
computing it.

3.2. COMPOSITION OF SCHEMA MAPPINGS 39

3.2 COMPOSITION OF SCHEMA MAPPINGS
The composition operator has been identified as one of the fundamental operators for the devel-
opment of a framework for managing schema mappings. The goal of this operator is to generate a
mapping M13 that has the same effect as applying successively two given mappings M12 and M23,
provided that the target schema of M12 is the same as the source schema of M23.

As mentioned in the introduction, the semantics of the composition operator can be defined
in terms of the semantics of this operator for binary relations.

Definition 3.1 (Composition operator). Let M12 be a mapping from a schema R1 to a schema
R2, and M23 a mapping from R2 to a schema R3. Then the composition of M12 and M23 is
defined as

M12 ◦ M23 = {(S1, S3) | ∃S2 : (S1, S2) ∈ M12 and (S2, S3) ∈ M23}.

To reduce the clutter, we shall often write (S, T) ∈ M instead of the more formal (S, T) ∈ �M�.
For the mappings M12, M23 and M13 shown in the introduction of this chapter, M13

corresponds to the composition of M12 and M23 since �M13� = �M12 ◦ M23�. It is important
to notice that this example shows two mappings specified by st-tgds, whose composition can also be
specified by these dependencies.This motivates the first fundamental question about the composition
operator, namely, whether the composition of st-tgds can always be specified in the same logical
language. At a first glance, one may be tempted to think that the answer to this question is positive,
and that the example in the introduction can be generalized to any composition of st-tgds. However,
the following example proves that this is not the case, as it shows two mappings specified by st-tgds
whose composition cannot be specified by a set of these dependencies.

Example 3.2 Consider a schema R1 consisting of one binary relation Takes, that associates a
student name with a course she/he is taking, a schema R2 consisting of a relation Takes1, that is
intended to be a copy of Takes, and of an additional relation symbol Student, that associates a
student with a student id; and a schema R3 consisting of a binary relation symbol Enrollment, that
associates a student id with the courses this student is taking. Consider now mappings M12 and
M23 specified by the following sets of st-tgds:

�12 = {Takes(n, c) → Takes1(n, c), Takes(n, c) → ∃s Student(n, s)},
�23 = {Student(n, s) ∧ Takes1(n, c) → Enrollment(s, c)}.

Mapping M12 requires that a copy of every tuple in Takes must exist in Takes1 and, moreover, that
each student name n must be associated with some student id s in the relation Student. Mapping
M23 requires that if a student with name n and id s takes a course c, then (s, c) is a tuple in the
relation Enrollment. Intuitively, in the composition mapping, one would like to replace the name

40 3. METADATA MANAGEMENT

n of a student by a student id in, and then for each course c that is taken by n, one would like to
include the tuple (in, c) in the table Enrollment. Unfortunately, it can be formally proved that it is
not possible to express this relationship by using a set of st-tgds. In particular, a st-tgd of the form:

Takes(n, c) → ∃y Enrollment(y, c) (3.1)

does not express the desired relationship, as it may associate a distinct student id y for each tuple
(n, c) in Takes and, thus, it may create several identifiers for the same student name. �

The previous example shows that in order to express the composition of mappings specified by
st-tgds, one has to use a language more expressive than st-tgds. However, the example gives little
information about what the right language for composition is. In fact, the composition of mappings
M12 and M23 in this example can be defined in first-order logic:

∀n∃y∀c (Takes(n, c) → Enrollment(y, c)),

which may lead to the conclusion that FO is a good alternative to define the composition of map-
pings specified by st-tgds. However, a complexity argument shows that this conclusion is incor-
rect. More specifically, given mappings M12 = (R1, R2, �12) and M23 = (R2, R3, �23), where
�12 and �23 are sets of st-tgds, define the composition problem for M12 and M23, denoted by
Composition(M12,M23), as the problem of verifying, given S1 ∈ Inst(R1) and S3 ∈ Inst(R3),
whether (S1, S3) ∈ M12 ◦ M23. If the composition of M12 with M23 is defined by a finite set
� of formulas in some logical formalism, then Composition(M12,M23) is reduced to the prob-
lem of verifying whether a pair of instances (S1, S3) satisfies �. In particular, if � is a set of FO
formulas, then the complexity of Composition(M12,M23) is in AC0, as the complexity of the
problem of verifying whether a fixed set of FO formulas is satisfied by an instance is in this com-
plexity class 1. Thus, if the complexity of Composition(M12,M23) is higher than AC0, for some
mappings M12 and M23 specified by st-tgds, then one can conclude that the composition cannot
be expressed in FO. In fact, the following theorem shows that the latter holds, as the complexity of
Composition(M12,M23) can be NP-complete, and it is well-known that AC0 � NP.

Theorem 3.3 For every pair of mappings M12, M23 specified by st-tgds, Composition(M12,M23)

is in NP. Moreover, there exist mappings M

12 and M

23 specified by st-tgds such that
Composition(M

12,M

23) is NP-complete.

Proof. The membership of Composition(M12,M23) in NP can be proved by showing that there ex-
ists a polynomial p (that depends on M12 and M23) such that if (S1, S3) ∈ M12 ◦ M23, then there
exists an instance S2 satisfying that (S1, S2) ∈ M12, (S2, S3) ∈ M23 and ‖S2‖ ≤ p(‖S1‖ + ‖S3‖).
1Recall that AC0 is the class of problems that can be accepted by a family of constant-depth, unbounded-fanin circuits with
AND, OR, and NOT gates. Its uniform version, which contains FO, is a subclass of Logspace, and thus Ptime.

3.2. COMPOSITION OF SCHEMA MAPPINGS 41

We leave this proof for the reader, and we focus here on showing that Composition(M12,M23)

can be NP-hard.
Let R1 be a schema consisting of a unary relation node and a binary relation edge, R2 a schema

consisting of binary relations coloring and edge′, and R3 a schema consisting of a binary relation
error and a unary relation color. Moreover, let M

12 = (R1, R2, �12) and M

23 = (R2, R3, �23),

where �12 consists of the following st-tgds:

node(x) → ∃y coloring(x, y), (3.2)
edge(x, y) → edge′(x, y),

and �23 consists of the following st-tgds:

edge′(x, y) ∧ coloring(x, u) ∧ coloring(y, u) → error(x, y), (3.3)
coloring(x, y) → color(y). (3.4)

Next, we show that Composition(M

12,M

23) is NP-hard by reducing from the graph 3-coloring
problem. Intuitively, relations node and edge in R1 store a graph G, and relation edge′ in R2 is
a copy of edge. Moreover, st-tgd (3.2) indicates that a color must be assigned to each node in the
graph and, thus, relation coloring in R2 stores a possible coloring of graph G. Finally, st-tgd (3.4)
indicates that relation color in R3 stores the colors used in the coloring of G, and st-tgd (3.3)
indicates that error stores any incorrect assignment of colors, that is, error(x, y) holds if x, y are
adjacent nodes in G and the same color is assigned to them.

Formally, let G = (N, E) be a graph, and define instances S1 of R1 and S3 of R3 as follows:

nodeS1 = N , colorS3 = {red , green, blue},
edgeS1 = E, errorS3 = ∅.

Then, it holds that (S1, S3) ∈ M

12 ◦ M

23, if and only if graph G is 3-colorable. This concludes the
proof of the theorem, as it shows that the graph 3-coloring problem can be reduced in polynomial
time to Composition(M

12,M

23). �

Theorem 3.3 not only shows that FO is not the right language to express the composition of mappings
given by st-tgds but also gives a good insight on what needs to be added to st-tgds to obtain a language
capable of expressing the composition of these dependencies. Given that Composition(M12,M23)

is in NP, one concludes from Fagin’s Theorem that the composition can be defined by an existential
second-order logic formula. In fact, it is shown in the following section that the extension of st-tgds
with existential second-order quantification gives rise to the right mapping language for dealing with
the composition operator.

3.2.1 EXTENDING ST-TGDS WITH SECOND-ORDER QUANTIFICATION
In the previous section, we showed that FO is not expressive enough to represent the composition
of mappings given by st-tgds, and that the existential fragment of second-order logic can be used

42 3. METADATA MANAGEMENT

to express the composition of this type of mappings. In this section, we go deeper into this, and we
show that the extension of st-tgds with existential second-order quantification is the right language
for composition.

Formally, given schemas Rs and Rt with no relation symbols in common, a second-order tuple-
generating dependency from Rs to Rt (SO tgd) is a formula of the form:

∃f1 · · · ∃fm

(
∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)

)
,

where

1. each fi (1 ≤ i ≤ m) is a function symbol,

2. each formula ϕi (1 ≤ i ≤ n) is a conjunction of relational atoms of the form P(y1, . . . , yk)

and equality atoms of the form t = t ′, where P is a k-ary relation symbol of Rs and y1, . . ., yk

are (not necessarily distinct) variables in x̄i , and t , t ′ are terms built from x̄i and f1, . . ., fm,

3. each formula ψi (1 ≤ i ≤ n) is a conjunction of relational atomic formulas of the form
R(t1, . . . , t
), where R is an
-ary relation symbol of Rt and t1, . . . t
 are terms built from x̄i

and f1, . . ., fm, and

4. each variable in x̄i (1 ≤ i ≤ n) appears in some relational atom of ϕi .

To define the semantics of SO tgds, it is necessary to specify the semantics of the existential second-
order quantifiers in these dependencies. In particular, in deciding whether (S, T) |= σ , for an SO
tgd σ , what should the domain and range of the functions instantiating the existentially quantified
function symbols be? The obvious choice is to let the domain and range be the domain of (S, T),
but it has been shown in the data exchange literature that this does not work properly. Instead, the
semantics of SO tgds is defined as follows. Let σ be an SO tgd from a schema Rs to a schema Rt,
and assume that S is an instance of Rs and T is an instance of Rt. Then (S, T) satisfies σ , denoted
by (S, T) |= σ , if A(S,T) |= σ under the standard notion of satisfaction in second-order logic, where
A(S,T) is a structure obtained from (S, T) as follows.The domain of A(S,T) isConst ∪ Var.Moreover,
for every relation P in Rs, the interpretation of P in A(S,T) is P S , and for every relation R in Rt,
the interpretation of R in A(S,T) is RT .

Example 3.4 Let Rs be a source schema consisting of a unary relation P , Rt a target schema
consisting of a unary relation R, and σ the following SO tgd from Rs to Rt:

∃f

(
∀x (P (x) ∧ x = f (x) → R(x))

)
.

Let S be an instance of Rs defined as P S = {a}, and assume that T is the empty instance of Rt.
According to the above definition, (S, T) |= σ since A(S,T) |= σ with any interpretation of f that
maps a to an element b such that a �= b. On the other hand, if one is not allowed to include extra

3.2. COMPOSITION OF SCHEMA MAPPINGS 43

values in deciding whether (S, T) satisfies σ , then (S, T) �|= σ , as in this case, the only possible
interpretation of f maps a into itself since Dom(S) ∪ Dom(T) = {a}. �

As shown in the previous example, the inclusion of extra values when interpreting the function
symbols of an SO tgd makes a difference. But it should be noticed that the possibility of using an
infinite set of extra values is not significant in the case of SO tgd, as instead of taking the domain of
A(S,T) to be (Const ∪ Var), one can take it to be finite and sufficiently large:

Proposition 3.5 Let σ be an SO tgd from a schema Rs to a schema Rt. Then there exists a polynomial p,
which depends only on σ , with the following property. Assume that S is an instance of Rs, T is an instance
of Rt, U is a set such that (Dom(S) ∪ Dom(T)) ⊆ U ⊆ (Const ∪ Var) and |U | ≥ p(‖S‖ + ‖T ‖),
and AU

(S,T) is defined as A(S,T), except that it has domain U .Then A(S,T) |= σ if and only if AU
(S,T) |= σ .

Several features of SO tgds make them the right language for composition. First, it is not difficult
to prove that every set of st-tgds can be transformed into an SO tgd. In fact, the well-known
Skolemization method can be used to compute an SO tgd equivalent to a set of st-tgds. For example,
the following set of st-tgds from Example 3.2:

{Takes(n, c) → Takes1(n, c), Takes(n, c) → ∃s Student(n, s)}
is equivalent to SO tgd:

∃f

(
∀n∀c (Takes(n, c) → Takes1(n, c)) ∧ ∀n∀c (Takes(n, c) → Student(n, f (n, c)))

)
.

Second, it is possible to prove that SO tgds are closed under composition. That is, given an SO tgd
σ12 from a schema R1 to a schema R2, and an SO tgd σ23 from R2 to a schema R3, there exists
an SO tgd σ13 from R1 to R3 such that M13 = M12 ◦ M23, where M13, M12 and M23 are the
mappings defined by σ13, σ12 and σ23, respectively.

Example 3.6 We show here how to compute the composition of two SO tgds by considering
a variation of the mappings used in the proof of Theorem 3.3. Let R1 be a schema consisting
of a unary relation node and a binary relation edge, R2 a schema consisting of binary relations
coloring and edge′, and R3 a schema consisting of unary relations error and color. Moreover,
let M12 = (R1, R2, �12) and M23 = (R2, R3, �23), where �12 consists of the following st-tgds:

node(x) → ∃y coloring(x, y),

edge(x, y) → edge′(x, y),

and �23 consists of the following st-tgds:

edge′(x, y) ∧ coloring(x, u) ∧ coloring(y, u) → ∃v error(v),

coloring(x, y) → color(y).

44 3. METADATA MANAGEMENT

As in the proof of Theorem 3.3, it is possible to prove that the composition of M12 and M23 can
be used to encode the graph 3-coloring problem.

Consider now the SO tgds representing mappings M12 and M23. That is, let σ12 be the
following SO tgd:

∃f

(
∀x (node(x) → coloring(x, f (x))) ∧ ∀x∀y (edge(x, y) → edge′(x, y))

)
,

which is equivalent to �12, and let σ23 be the following SO tgd:

∃g

(
∀x∀y∀u (edge′(x, y) ∧ coloring(x, u) ∧ coloring(y, u) → error(g(x, y, u))) ∧

∀x∀y (coloring(x, y) → color(y))

)
,

which is equivalent to �23. Next we show the essential steps of an algorithm that constructs an
SO tgd σ13 defining the composition of the mappings specified by σ12 and σ23. As a first step, for
every conjunct ∀x̄ (ϕ → ψ) of σ12, each non-atomic term t in ψ is eliminated by replacing it by a
fresh variable u and including equality u = t in ϕ. More specifically, σ12 is replaced by the following
dependency:

∃f

(
∀x∀y (node(x) ∧ y = f (x) → coloring(x, y)) ∧

∀x∀y (edge(x, y) → edge′(x, y))

)
. (3.5)

It is important to notice that (3.5) is not an SO tgd as it does not satisfy condition (4) in the
definition of SO tgds (variable y in the first conjunct of (3.5) is mentioned neither in predicate
node nor in predicate edge). As a second step, the algorithm replaces every relational atom in the
premise of a conjunct of σ23 by its definition according to (3.5), that is,coloring(x, y) is replaced by
(node(x) ∧ y = f (x)) and edge′(x, y) is replaced by edge(x, y).The following formula is obtained
as a result of this process:

∃f ∃g

(
∀x∀y∀u (edge(x, y) ∧ node(x) ∧ u = f (x) ∧

node(y) ∧ u = f (y) → error(g(x, y, u))) ∧
∀x∀y (node(x) ∧ y = f (x) → color(y))

)
. (3.6)

Again, it is important to notice that (3.6) is not an SO tgd as it does not satisfy condition (4) in the
definition of SO tgds. As a final step, the algorithm transforms (3.6) into an SO tgd by eliminating
all the variables that do not satisfy the aforementioned condition (4). This final step is achieved
by replacing these variables by the terms that are equal to according to (3.6). More precisely, u is

3.2. COMPOSITION OF SCHEMA MAPPINGS 45

replaced by f (y) in the first conjunct of (3.6), while y is replaced by f (x) in the second conjunct
of this formula:

∃f ∃g

(
∀x∀y (edge(x, y) ∧ node(x) ∧

node(y) ∧ f (x) = f (y) → error(g(x, y, f (y)))) ∧
∀x (node(x) → color(f (x)))

)
. (3.7)

Dependency (3.7) is the SO tgd returned by the algorithm. In fact, it can be proved that (3.7)
defines the composition of the mappings specified by σ12 and σ23. To see why this is the case, we
show how (3.7) can be used to represent the graph 3-coloring problem. It should be noticed that
(3.7) is equivalent to the following SO tgd:

∃f ∃h

(
∀x∀y (edge(x, y) ∧ node(x) ∧

node(y) ∧ f (x) = f (y) → error(h(x, y)) ∧
∀x (node(x) → color(f (x)))

)
, (3.8)

which is obtained by defining function h(x, y) as g(x, y, f (y)). Furthermore, relations node and
edge in (3.8) store a graph G, f (a) is the color assigned to a node a of G in (3.8), and error stores
any incorrect assignment of colors, that is, error(h(a, b)) holds if a, b are adjacent nodes in G and
the same color is assigned to them (which corresponds to the condition f (a) = f (b)). �

The following theorem shows that the composition algorithm presented in the previous example
can be generalized to any pair of SO tgds.

Theorem 3.7 Let M12 and M23 be mappings specified by SO tgds. Then the composition M12 ◦ M23

can also be specified by an SO tgd.

It should be noticed that the previous theorem can also be applied to mappings that are specified by
finite sets of SO tgds, as these dependencies are closed under conjunction. Moreover, it is important
to notice that Theorem 3.7 implies that the composition of a finite number of mappings specified
by st-tgds can be defined by an SO tgd, as every set of st-tgds can be expressed as an SO tgd.

Theorem 3.8 The composition of a finite number of mappings, each defined by a finite set of st-tgds, is
defined by an SO tgd.

Example 3.9 We have already shown in Example 3.6 how SO tgds can be used to express the
composition of mappings specified by st-tgds. As a second example, assume that M12 and M23 are

46 3. METADATA MANAGEMENT

the mappings defined in Example 3.2. Then the following SO tgd defines the composition of these
two mappings:

∃g

(
∀n∀c (Takes(n, c) → Enrollment(g(n), c))

)
.

�

Up to this point, we have shown that the language of SO tgds is closed under composition, and that
the composition of any finite number of mappings specified by st-tgds can be defined by an SO tgd.
Thus, SO tgds are a good language when dealing with the composition operator. But, of course, it
is natural to ask whether all the features of SO tgds are necessary and whether there exists a smaller
language that also has these good properties for composition. Interestingly, it can also be proved
that all the features of SO tgds are necessary to deal with the composition operator as every SO tgd
defines the composition of a finite number of mappings specified by st-tgds. This fact, which is the
converse of Theorem 3.8, shows that SO tgds are exactly the right language for representing the
composition of mappings given by st-tgds.

Theorem 3.10 Every SO tgd defines the composition of a finite number of mappings, each defined by a
finite set of st-tgds.

Example 3.11 Let Rs be a schema consisting of a unary relation P and Rt a schema consisting
of a binary relation R. Furthermore, assume that the relationship between these schemas is given by
the following SO tgd:

σ = ∃f ∃g

(
∀x (P (x) ∧ f (x) = g(x) → R(f (g(x)), g(f (x))))

)
.

We show here the essential steps of an algorithm that, given SO tgd σ , generates a finite sequence
of mappings that are given by st-tgds and whose composition is defined by σ .

For the sake of readability, let R1 be the schema Rs. The algorithm starts by generating a
schema R2, consisting of binary relations F1, G1 and of a unary relation P1, and a mapping M12 =
(R1, R2, �12) that is specified by a set �12 of st-tgds consisting of the following dependencies:

P(x) → P1(x),

P (x) → ∃y F1(x, y),

P (x) → ∃z G1(x, z).

Intuitively,P1 is a copy of P ,F1(x, y) indicates that f (x) = y, and G1(x, y) indicates that g(x) = y.
In particular, the second and third dependencies above have the effect of guaranteeing that f (x) and
g(x) are defined for every element x in P , respectively. Then the algorithm generates a schema R3,

3.2. COMPOSITION OF SCHEMA MAPPINGS 47

consisting of binary relations F2,G2 and of a unary relation P2, and a mapping M23 = (R2, R3, �23)

that is specified by a set �23 of st-tgds consisting of the following dependencies:

P1(x) → P2(x),

F1(x, y) → F2(x, y),

G1(x, y) → G2(x, y),

F1(x, y) → ∃u G2(y, u),

G1(x, y) → ∃v F2(y, v).

As in the previous case, P2 is a copy of P1, F2(x, y) indicates that f (x) = y and G2(x, y) indicates
that g(x) = y. In particular, all the values of f stored in F1 are also stored in F2, by the second
dependency above, and all the values of g stored in G1 are also stored in G2, by the third dependency
above. But not only that, the fourth dependency also guarantees that g(y) is defined for all y in the
range of f , and the fifth dependency guarantees that f (y) is defined for all y in the range of g.Finally,
let R4 be the schema Rt. Then the algorithm generates a mapping M34 = (R3, R4, �34) that uses
P2, F2 and G2 to populate the target relation R. More precisely, �34 consists of the following st-tgd:

P(x) ∧ F2(x, y) ∧ G2(x, y) ∧ F2(y, z1) ∧ G2(y, z2) → R(z1, z2).

The output of the algorithm is the sequence of mapping M12, M23, M34, which satisfies that
(M12 ◦ M23) ◦ M34 is defined by SO tgd σ .

We conclude this example by pointing out that the previous algorithm can be generalized to
any SO tgd σ . In fact, if the nesting depth of an SO tgd σ is defined to be the largest depth of the
terms that appear in σ , then the generalization of the above algorithm generates a sequence of r + 1
mappings when the input is an SO tgd of nesting depth r . �

In this section, we have shown that the language of SO tgds is exactly the right language for
representing the composition of mappings given by st-tgds. But up to this point, we have not said
anything about the complexity of computing an SO tgd that defines the composition of a sequence
of mappings. We conclude this section by saying a few words about this. More specifically, there
exists an exponential-time algorithm that given two mappings M12 and M23, each specified by an
SO tgd, returns a mapping M13 specified by an SO tgd and equivalent to the composition of M12

and M23. This algorithm, which is a generalization of the procedure presented in Example 3.6, can
also be used to compute an SO tgd that defines the composition of two mappings given by st-tgds
as every mapping specified by a finite set of st-tgds can be transformed into an equivalent mapping
specified by an SO tgd. Moreover, it has been shown that exponentiality is unavoidable in such an
algorithm, as there exist mappings M12 and M23, each specified by a finite set of st-tgds, such that
every SO tgd that defines the composition of M12 and M23 is of size exponential in the size of
M12 and M23.

48 3. METADATA MANAGEMENT

3.3 INVERTING SCHEMA MAPPING
The inverse operator is another important operator that naturally arises in the development of a
framework for managing schema mappings. Once the data has been transferred from the source to
the target, the goal of the inverse is to recover the initial source data; if a mapping M′ is an inverse
of a mapping M, then M′ should bring the data exchanged through M back to the source.

In the study of this operator, the key issue is to provide a good semantics for this operator,
which turned out to be a difficult problem. In this section, we present and compare two of the main
proposals for inverting schema mappings that have been considered in the data exchange context,
namely the notions of Fagin-inverse and maximum recovery.

Some of the notions mentioned above are only appropriate for certain classes of mappings.
In particular, the following two classes of mappings are used in this section when defining and
comparing these notions of inversion. A mapping M from a schema R1 to a schema R2 is said to be
total if SolM(S) �= ∅ for every instance S of R1 (i.e., all instances have solutions). A mapping M is
said to be closed-down on the left if (S1, S2) ∈ M and S′

1 ⊆ S1 imply that (S′
1, S2) ∈ M.Furthermore,

whenever a mapping is specified by a set of formulas, we consider source instances as just containing
constants values, and target instances as containing constants and null values. This is a natural
assumption in a data exchange context since target instances generated as a result of exchanging data
may be incomplete, thus, null values are used as place-holders for unknown information.

3.3.1 A FIRST DEFINITION OF INVERSE
We start by considering the first notion of inverse for schema mappings proposed in the literature,
that we call Fagin-inverse in this chapter. Roughly speaking, the definition of this notion is based on
the idea that a mapping composed with its inverse should be equal to the identity schema mapping.
Thus, given a schema R, an identity schema mapping IdR is first define as {(S1, S2) | S1, S2 are
instances of R and S1 ⊆ S2}, and then the notion of Fagin-inverse is defined as follows.

Definition 3.12 (Fagin-inverse). Let M be a mapping from a schema R1 to a schema R2, and
M′ a mapping from R2 to R1. Then M′ is a Fagin-inverse of M if M ◦ M′ = IdR1 . �

It is important to notice that IdR is not the usual identity relation over R. In fact, this identity is
appropriate for mappings that are total and closed-down on the left and, in particular, for the class
of mappings specified by st-tgds.

Example 3.13 Let R1 be a schema consisting of a unary relation S, R2 a schema consisting of
unary relations U and V , and M a mapping from R1 to R2 specified by st-tgds S(x) → U(x) and
S(x) → V (x). Intuitively, M is Fagin-invertible since all the information in the source relation S is
transferred to both relations U and V in the target. In fact, the mapping M′ specified by dependency
U(x) → S(x) is a Fagin-inverse of M since M ◦ M′ = IdR1 . But not only that, the mapping M′′
specified by dependency V (x) → S(x) is also a Fagin-inverse of M, which shows that there need
not be a unique Fagin-inverse. �

3.3. INVERTING SCHEMA MAPPING 49

A first fundamental question about any schema mapping operator is for which class of mappings it
is defined. In particular, for the case of the inverse operator, one would like to know for which classes
of mappings it is guaranteed to exist. To answer this question, necessary and sufficient conditions
for the existence of the distinct inverse notions have been developed. Here, we present one such
condition for the case of the notion of Fagin-inverse, and we use it to show that Fagin-inverses are
not guaranteed to exist for the class of mappings specified by st-tgds. More precisely, a mapping M
from a schema R1 to a schema R2 is said to satisfy the unique-solutions property if for every pair of
instances S1, S2 of R1, if SolM(S1) = SolM(S2), then S1 = S2. The following proposition shows
that the unique-solutions property is a necessary condition for the existence of Fagin-inverses.

Proposition 3.14 Let M be a total and closed-down on the left mapping. If M is Fagin-invertible,
then M satisfies the unique-solutions property.

Proof. Assume that M is a mapping from a schema R1 to a schema R2, and let M′ be a mapping
from R2 to R1 such that M ◦ M′ = IdR1 (such a mapping exists since M is Fagin-invertible).
Moreover, assume that S1 and S2 are instances of R1 such that SolM(S1) = SolM(S2). We need
to show that S1 = S2.

Given that SolM(S1) = SolM(S2), we have that SolM◦M′(S1) = SolM◦M′(S2). Thus,
given that M ◦ M′ = IdR1 , we conclude that SolIdR1

(S1) = SolIdR1
(S2). Therefore, from the

fact that S1 ∈ SolIdR1
(S1) and S2 ∈ SolIdR1

(S2), we conclude that S1 ∈ SolIdR1
(S2) and S2 ∈

SolIdR1
(S1). But this implies that (S2, S1) ∈ IdR1 and (S1, S2) ∈ IdR1 , and, hence, we conclude

from the definition of IdR1 that S2 ⊆ S1 and S1 ⊆ S2. This concludes the proof of the proposition.
�

Proposition 3.14 tell us that the spaces of solutions for distinct source instances under a Fagin-
invertible mapping must be distinct. Thus, one can prove that a mapping does not admit a Fagin-
inverse by showing that it does not satisfy the preceding condition.

Example 3.15 Let R1 be a schema consisting of a binary relation R, R2 a schema consisting of a
unary relation T , and M a mapping from R1 to R2 specified by st-tgd R(x, y) → T (x). Intuitively,
M has no Fagin-inverse since M only transfers from source to target the information about the
first component of R. In fact, it can be formally proved that this mapping is not Fagin-invertible as
follows. Let S1 and S2 be instances of R1 such that:

RS1 = {(1, 2)} and RS2 = {(1, 3)}.
Then we have that SolM(S1) = SolM(S2), which implies that M does not satisfies the unique-
solutions property since S1 �= S2. �

From the preceding example, we obtain that:

50 3. METADATA MANAGEMENT

Corollary 3.16 There exists a mapping M specified by a finite set of st-tgds that does not admit a
Fagin-inverse.

Although the unique-solutions property is a useful tool for establishing non Fagin-invertibility, it
can be shown that it does not characterize this notion. In fact, the following example shows that the
unique-solutions property is not a sufficient condition for Fagin-invertibility even for the class of
mappings specified by st-tgds.

Example 3.17 Let R1 be a schema consisting of unary relations A and B, R2 a schema consisting
of a binary relation R and a unary relation C, and M a mapping from R1 to R2 specified by st-tgds:

A(x) → R(x, x),

B(x) → ∃y R(x, y),

A(x) ∧ B(x) → C(x).

Next, we show that M satisfies the unique-solutions property, but it is not Fagin-invertible. As-
sume that S1 and S2 are distinct instances of R1. Next, we show that SolM(S1) �= SolM(S2) by
considering the following cases.

(1) Assume that there exists a ∈ AS1 such that a �∈ AS2 , and let T2 be the canonical universal
solution for S2 under M. Then we have that (a, a) �∈ RT2 , and, therefore, T2 is not a solution
for S1 under M. We conclude that SolM(S1) �= SolM(S2).

(2) Assume that there exists a ∈ AS2 such that a �∈ AS1 . Then it can be shown that SolM(S1) �=
SolM(S2) as in the previous case.

(3) Assume that AS1 = AS2 , and that there exists b ∈ BS1 such that b �∈ AS1 and b �∈ BS2 . Then
let T2 be the canonical universal solution for S2 under M. Given that b �∈ AS2 , we have that
RT2 does not contain any tuple of the form R(b, c), and, therefore, T2 is not a solution for S1

under M. We conclude that SolM(S1) �= SolM(S2).

(4) Assume that AS1 = AS2 , and that there exists b ∈ BS2 such that b �∈ AS1 and b �∈ BS1 . Then
we conclude that SolM(S1) �= SolM(S2) as in the previous case.

(5) Assume that AS1 = AS2 , and that there exists b ∈ BS1 such that b ∈ AS1 and b �∈ BS2 . Then
let T2 be the canonical universal solution for S2 under M. Given that b �∈ BS2 , we have that
b �∈ CT2 , and, therefore, T2 is not a solution for S1 under M. We conclude that SolM(S1) �=
SolM(S2).

(6) Finally, assume that AS1 = AS2 , and that there exists b ∈ BS2 such that b ∈ AS1 and b �∈ BS1 .
Then we conclude that SolM(S1) �= SolM(S2) as in the previous case.

3.3. INVERTING SCHEMA MAPPING 51

Now, for the sake of contradiction, assume that M is a Fagin-invertible mapping, and let M′ be a
mapping from R2 to R1 such that M ◦ M′ = IdR1 . Then for every pair S1, S2 of instances of R1
such that SolM(S1) ⊆ SolM(S2), it holds that S2 ⊆ S1.To see why this is the case, first notice that if
SolM(S1) ⊆ SolM(S2), then SolM◦M′(S1) ⊆ SolM◦M′(S2). Thus, given that M ◦ M′ = IdR1 ,
we have that SolIdR1

(S1) ⊆ SolIdR1
(S2). Hence, from the fact that S1 ∈ SolIdR1

(S1), we conclude
that S1 ∈ SolIdR1

(S2), and, therefore, S2 ⊆ S1.
Next, we use the property shown above to obtain a contradiction. Assume that S1 and S2 are

instances of R1 such that:

AS1 = {1} AS2 = ∅
BS1 = ∅ BS2 = {1}

Then we have that SolM(S1) ⊆ SolM(S2), which contradicts the property shown above since
S2 �⊆ S1. �

In Example 3.17, we introduced a second condition that Fagin-invertible mappings satisfy and
that is stronger than the unique-solutions property. Formally, a mapping M from a schema R1
to a schema R2 is said to satisfy the subset property if for every pair S1, S2 of instances of R1, if
SolM(S1) ⊆ SolM(S2), then S2 ⊆ S1. It turns out that this condition is a necessary and sufficient
condition for the existence of Fagin-inverses for the class of mappings specified by st-tgds.

Theorem 3.18 Let M be a mapping specified by a finite set of st-tgds. Then M is Fagin-invertible if
and only if M satisfies the subset property.

The previous result does not extend to the entire class of total and closed-down on the left mappings.
In fact, a characterization of Fagin invertibility requires of a stronger condition, which is defined as
follows. Let M be a mapping from a schema R1 to a schema R2, S be an instance of R1 and T be
an instance of R2. Then T is a strong witness for S under M if for every instance S′ of R1 such that
T ∈ SolM(S′), it holds that S′ ⊆ S. If T is also a solution, we call it a strong witness solution.

Strong witness solutions exist for Fagin-invertible mappings that are specified by st-tgds.

Proposition 3.19 Let M be a Fagin-invertible mapping from a schema R1 to a schema R2 that is
specified by a set of st-tgds. Then for every instance S of R1, each universal solution T for S under M is
also a strong witness solution for S under M.

Proof. Let S be an instance of R1 and T a universal solution for S under M (such a solution exists
since M is specified by a set of st-tgds). Assume that S′ is an instance of R1 such that T ∈ SolM(S′).
Next, we show that S′ ⊆ S.

Given that T ∈ SolM(S′), we have that SolM(S) ⊆ SolM(S′). To see why this is the case,
let T ′ be a solution for S under M. Given that T is a universal solution for S under M, we have

52 3. METADATA MANAGEMENT

that there exists a homomorphism from T into T ′.Thus, given that T ∈ SolM(S′) and M is closed
under target homomorphisms2, we conclude that T ′ ∈ SolM(S′).

Since M is Fagin-invertible, we know that M satisfies the subset-property. Thus, given that
SolM(S) ⊆ SolM(S′), we have that S′ ⊆ S, which concludes the proof of the proposition. �

In the following theorem, it is shown that the notion of strong witness can be used to characterize
Fagin-invertibility for the class of mappings that are total and closed-down on the left.

Theorem 3.20 Let M be a total and closed-down on the left mapping from a schema R1 to a schema
R2. Then M is Fagin-invertible if and only if every instance of R1 has a strong witness solution under
M.

Given that Fagin-inverses are not guaranteed to exist for the class of mappings specified by st-
tgds, a second fundamental question about this notion of inverse is whether Fagin-invertibility is
a decidable condition for this class of mappings. Interestingly, the subset property can be used to
prove that this is indeed a decidable condition: if a mapping M specified by a set of st-tgds does
not have a Fagin-inverse, then there exists a polynomial-size counterexample showing that M does
not satisfy the subset property.

Theorem 3.21 The problem of checking, given a mapping M specified by a set of st-tgds, whether M is
Fagin-invertible is coNP-complete.

Proof. We show here the membership of the problem in coNP, and leave coNP-hardness as an
exercise for the reader. Given a mapping M = (R1, R2, �12) that is not Fagin-invertible, a pair
(S1, S2) of instances of R1 is said to be a witness for the non Fagin-invertibility of M if SolM(S1) ⊆
SolM(S2) but S2 �⊆ S1 (notice that such a pair shows that M does not satisfy the subset property).
Then it is shown here that for every mapping M specified by a set of st-tgds, if M is not Fagin-
invertible, then there exists a witness (S1, S2) for the non Fagin-invertibility of M such that ‖S1‖ +
‖S2‖ is O(‖�12‖2), from which the membership of the problem in coNP immediately follows.

Let M = (R1, R2, �12), where �12 is a set of st-tgds, and assume that M is not Fagin-
invertible. Then we have by Theorem 3.18 that there exist instances S1, S2 of R1 such that
SolM(S1) ⊆ SolM(S2) but S2 �⊆ S1. Thus, there exist P in R1 and t0 ∈ P S2 such that t0 �∈ P S1 .
Let S

2 be an instance of R1 consisting only of fact P(t0), that is, P S

2 = {t0} and RS

2 = ∅ for all the
other relations R in R1. Since �12 is a set of st-tgds, we have that:

SolM(S2) ⊆ SolM(S

2).

Hence, SolM(S1) ⊆ SolM(S

2) and S

2 �⊆ S1, which shows that (S1, S

2) is also a witness for the non

Fagin-invertibility of mapping M. Now let T1, T

2 be the canonical universal solutions for S1 and

2A mapping M is closed under target homomorphisms if for every (S, T) ∈ M and T ′ such that there exists a homomorphism
from T to T ′, it holds that (S, T ′) ∈ M.

3.3. INVERTING SCHEMA MAPPING 53

S

2 under M, respectively. Given that T1 ∈ SolM(S1), we have that T1 ∈ SolM(S

2), and, therefore,
there exists a homomorphism h from T

2 to T1. We use h to construct the desired quadratic-size
witness for the non Fagin-invertibility of mapping M. More precisely, let S

1 be an instance of
R1 defined as follows. For every R in R2 and tuple t ∈ RT

2 , choose a st-tgd ϕ(x̄) → ∃ȳ ψ(x̄, ȳ)

and tuples ā, b̄ such that (1) ϕ(x̄) → ∃ȳ ψ(x̄, ȳ) is a st-tgd in �12, ā is a tuple of values from
Dom(S1) and b̄ is a tuple of values from Dom(T1), (2) ϕ(ā) holds in S1, (3) ψ(ā, b̄) holds in T1,
and (4) R(h(t)) is a conjunct in ψ(ā, b̄). It should be noticed that such a tuple exists since (S1, T1)

satisfies �12 and R(h(t)) is a fact in T1 (given that h is a homomorphism from T

2 to T1). Then

include all the conjuncts of ϕ(ā) as facts of S

1 . Next, we show that (S

1, S

2) is a witness for the non

Fagin-invertibility of M and ‖S

1‖ + ‖S

2‖ is O(‖�12‖2).
Let T

1 be the canonical universal solution for S

1 under M. By definition of S

1 , we have that
the homomorphism h mentioned above is also a homomorphism from T

2 to T

1 .Thus, given that T

1
is a universal solution for S

1 under M and M is closed under target homomorphisms, we conclude
that SolM(S

1) ⊆ SolM(S

2). Moreover, given that S

1 ⊆ S1, we also have that S

2 �⊆ S

1 and, hence,
(S

1, S

2) is a witness for the non Fagin-invertibility of M. Finally, given that S

2 consists of only
one fact, we have that ‖T

2 ‖ is bounded by ‖�12‖. Therefore, given that the number of tuples that
are included in S

1 for each fact R(t) in T

2 is bounded by ‖�12‖, we have that ‖S

1‖ is bounded by
‖�12‖2. Thus, it holds that ‖S

1‖ + ‖S

2‖ is O(‖�12‖2), which concludes the proof of the theorem.

�

A problem related to checking Fagin-invertibility is to check, for mappings M and M′, whether
M′ is a Fagin-inverse of M. Somewhat surprisingly, this problem is undecidable even for the class
of mappings specified by st-tgds.

Theorem 3.22 The problem of verifying, given mappings M = (R1, R2, �12) and M′ =
(R2, R1, �21) with �12 and �21 finite sets of st-tgds, whether M′ is a Fagin-inverse of M is un-
decidable.

A fundamental, and arguably the most important, issue about any notion of inverse is the problem of
computing an inverse for a given mapping. In the next section, we introduce the notion of maximum
recovery, which has also been proposed as a notion of inverse for schema mappings, and then we
study the issue of computing inverses in Section 3.3.3. In particular, we present a unified algorithm
based on query rewriting that computes not only Fagin-inverses but also maximum recoveries.

3.3.2 BRINGING EXCHANGED DATA BACK: THE RECOVERY OF A
SCHEMA MAPPING

As we mentioned before, a drawback of the notion of Fagin-inverse is that not every mapping
specified by a set of st-tgds is guaranteed to have an inverse under this notion. In this section, we
present the concepts of recovery and maximum recovery that were introduced to overcome this
limitation.

54 3. METADATA MANAGEMENT

The notion of recovery is defined by following a different approach to that of Fagin-inverse.
In fact, the main goal behind this notion is not to define an inverse operator but, instead, to give
a formal definition for what it means for a mapping M′ to recover sound information with respect
to a mapping M. Such a mapping M′ is called a recovery of M. But given that, in general, there
may exist many possible recoveries for a given mapping, it is also necessary to introduce a way to
compare alternative recoveries. This naturally gives rise to the notion of maximum recovery, which
is a mapping that brings back the maximum amount of sound information.

Let M be a mapping from a schema R1 to a schema R2, and IdR1 the identity schema mapping
over R1, that is, IdR1 = {(S, S) | S ∈ Inst(R1)}. When trying to invert M, the ideal would be to
find a mapping M′ from R2 to R1 such that M ◦ M′ = IdR1 ; if such a mapping exists, then we
know that if we use M to exchange data, the application of M′ gives as result exactly the initial
source instance. Unfortunately, in most cases this ideal is impossible to reach (for example, for the
case of mappings specified by st-tgds). But then at least one would like to find a schema mapping
M2 that does not forbid the possibility of recovering the initial source data. This gives rise to the
notion of recovery. In what follows, we refer to the domain of a mapping M, denoted by Dom(M),
as the set of source instances S that have solutions under M (SolM(S) �= ∅).

Definition 3.23 (Recovery). Let M be a mapping from a schema R1 to a schema R2, and M′ a
mapping from R2 to R1. Then M′ is a recovery of M if for every instance S ∈ Dom(M), it holds
that (S, S) ∈ M ◦ M′. �

Being a recovery is a sound but mild requirement. Indeed, a schema mapping M from a schema R1
to a schema R2 always has as recoveries, for example, mappings M1 = Inst(R2) × Inst(R1) and
M2 = M−1 = {(T , S) | (S, T) ∈ M}. If one has to choose between M1 and M2 as a recovery
of M, then one would probably choose M2 since the space of possible solutions for an instance
S under M ◦ M2 is smaller than under M ◦ M1. In general, if M′ is a recovery of M, then the
smaller the space of solutions generated by M ◦ M′, the more informative M′ is about the initial
source instances. This naturally gives rise to the notion of maximum recovery.

Definition 3.24 (Maximum recovery). Let M be a mapping from a schema R1 to a schema R2,
and M′ a mapping from R2 to R1. Then M′ is a maximum recovery of M if:

(1) M′ is a recovery of M, and

(2) for every recovery M′′ of M, it holds that M ◦ M′ ⊆ M ◦ M′′.

�

Example 3.25 Let R1 be a schema consisting of a binary relation E, R2 a schema consisting of a
binary relation F and a unary relation G, and M = (R1, R2, �) with � a set of st-tgds consisting
of the following dependency:

E(x, z) ∧ E(z, y) → F(x, y) ∧ G(z). (3.9)

3.3. INVERTING SCHEMA MAPPING 55

Let M1 be a mapping from R2 to R1 specified by tgd:

F(x, y) → ∃z (E(x, z) ∧ E(z, y)). (3.10)

It is straightforward to prove that M1 is a recovery of M. In fact, if S is an instance of R1 and T is
the canonical universal solution for S under M, then we have that (S, T) ∈ M and (T , S) ∈ M1,
from which we conclude that (S, S) ∈ M ◦ M1. Similarly, if M2 is a mapping from R2 to R1
specified by tgd:

G(z) → ∃x∃y (E(x, z) ∧ E(z, y)), (3.11)

then we also have that M2 is a recovery of M. On the other hand, if M3 is a mapping from R2 to
R1 specified by tgd:

F(x, y) ∧ G(z) → E(x, z) ∧ E(z, y), (3.12)

then we have that M3 is not a recovery of M. To see why this is the case, consider an instance S of
R1 such that:

ES = {(1, 1), (2, 2)}.
Next, we show that (S, S) �∈ M ◦ M3. By the sake of contradiction, assume that (S, S) ∈ M ◦ M3,
and let T be an instance of R2 such that (S, T) ∈ M and (T , S) ∈ M3. Given that (S, T) satisfies
st-tgd (3.9), we have that (1, 1), (2, 2) are elements of FT and 1, 2 are elements of GT . But then
given that (T , S) satisfies tgd (3.12), we conclude that the tuples (1, 2), (2, 1) are elements of ES ,
which leads to a contradiction.

Finally, let M4 be a mapping from R2 to R1 specified by tgds (3.10) and (3.11). In this case,
it is possible to prove that M4 is a maximum recovery of M. In fact, next, we introduce some
characterizations of the notion of maximum recovery that can be used to prove this fact. �

To check whether a mapping M′ is a Fagin-inverse of a mapping M, a condition that depends only
on M and M′ needs to be checked, namely that the composition of M with M′ is equal to the
identity mapping. On the other hand, verifying whether a mapping M′ is a maximum recovery of a
mapping M requires comparing M′ with every other recovery of M. Given that such a test is more
complicated, it would be desirable to have an alternative condition for this notion that depends only
on the input mappings. The next proposition gives one such condition.

Proposition 3.26 Let M be a mapping from a schema R1 to a schema R2, and M′ be a recovery of M.
Then M′ is a maximum recovery of M if and only if:

(1) for every (S1, S2) ∈ M ◦ M′, it holds that S2 ∈ Dom(M), and

(2) M = M ◦ M′ ◦ M.

56 3. METADATA MANAGEMENT

Next, we use Proposition 3.26 to prove that the claims in Example 3.25 are indeed correct. But before
doing this, we give some intuition about the conditions in Proposition 3.26.The first such condition
tells us that if an instance S is not in the domain of a mapping M, then a maximum recovery
of M should not recover information about this instance. The second condition in Proposition
3.26 is a desirable property for an inverse mapping. Intuitively, given a mapping M from a schema
R1 to a schema R2 and a mapping M′ from R2 to R1, mapping M′ does not lose information
when bringing back the data exchanged by M, if the space of solutions of every instance of R1
does not change after computing M ◦ M′. That is, for every instance S of R1, it should hold that
SolM(S) = SolM◦M′◦M(S) (or more succinctly, M = M ◦ M′ ◦ M). In general, recoveries do
not satisfy this condition, but Proposition 3.26 shows that maximum recoveries satisfy it. And not
only that, it also shows that the notion of maximum recovery can be characterized in terms of this
condition.

Example 3.27 (Example 3.25 continued) Recall that mapping M in Example 3.25 is specified
by the following st-tgd:

E(x, z) ∧ E(z, y) → F(x, y) ∧ G(z),

while recovery M4 of M is specified by the following tgds:

F(x, y) → ∃z (E(x, z) ∧ E(z, y)),

G(z) → ∃x∃y (E(x, z) ∧ E(z, y)).

Next, we use Proposition 3.26 to show that M4 is a maximum recovery of M. Given that M4 is a
recovery of M, we have that M ⊆ M ◦ M4 ◦ M. Thus, given that Dom(M) = R1, we conclude
from Proposition 3.26 that to prove that M4 is a maximum recovery of M, we only need to show
that M ◦ M4 ◦ M ⊆ M.

Let (S, T) ∈ M ◦ M4 ◦ M.To prove that (S, T) ∈ M, we need to show that (S, T) satisfies
the st-tgd that specifies M, that is, we have to prove that for every pair of tuples (a, b), (b, c) in
ES , where a, b, c are not necessarily distinct elements, it holds that (a, c) ∈ FT and b ∈ GT . To
prove this, first notice that given that (S, T) ∈ M ◦ M4 ◦ M, there exist instances S1 of R1 and
T1 of R2 such that (S, T1) ∈ M, (T1, S1) ∈ M4 and (S1, T) ∈ M. Thus, given that (a, b), (b, c)

are elements of ES , we conclude that (a, c) ∈ FT1 and b ∈ GT1 . Hence, from the definition of M4

and the fact that (T1, S1) ∈ M4, we conclude that there exist elements d, e and f such that:

{(a, d), (d, c), (e, b), (b, f)} ⊆ ES1 .

Therefore, given that (S1, T) ∈ M, we conclude that (a, c) ∈ FT and b ∈ GT , which was to be
shown.

On the other hand, it is claimed in Example 3.25 that the mapping M1 specified by depen-
dency F(x, y) → ∃z (E(x, z) ∧ E(z, y)) is not a maximum recovery of M (although it is a recovery
of M). To see why this is the case, let S, T be instances of R1 and R2, respectively, such that:

3.3. INVERTING SCHEMA MAPPING 57

ES = {(1, 2), (2, 3)} FT = {(1, 3)}
GT = {4}

It is clear that (S, T) �∈ M as element 2 is not in GT . However, (S, T) ∈ M ◦ M1 ◦ M since for
the instances T1, S1 of R2 and R1, respectively, such that:

FT1 = {(1, 3)} ES1 = {(1, 4), (4, 3)}
GT1 = {2}

we have that (S, T1) ∈ M, (T1, S1) ∈ M1 and (S1, T) ∈ M. Thus, we conclude that M1 does
not satisfy condition (2) in Proposition 3.26, from which we conclude that M1 is not a maximum
recovery of M. �

As we pointed out before, the main motivation for the introduction of the notion of maximum
recovery is to have an inverse operator that is defined for every mapping specified by st-tgds. Here,
we identify the class of mappings for which this operator is defined by providing a necessary and
sufficient condition for the existence of maximum recoveries. In particular, we use this condition to
show that every mapping specified by a finite set of st-tgds admits a maximum recovery.

Recall that in Section 3.3.1, we introduced the notion of a strong witness to characterize
Fagin-invertibility for the class of total and closed-down on the left mappings. Given a mapping M
from a schema R1 to a schema R2 and instances S, T of R1 and R2, respectively, T is a strong witness
for S under M if for every instance S′ of R1 such that T ∈ SolM(S′), it holds that S′ ⊆ S. It turns
out that by weakening this condition, one can characterize the existence of maximum recoveries.

Given a mapping M from a schema R1 to a schema R2 and instances S, T of R1 and R2,
respectively, T is a witness for S under M if for every instance S′ of R1 such that T ∈ SolM(S′), it
holds that SolM(S) ⊆ SolM(S′). Moreover, T is a witness solution for S under M if T is both a
solution and a witness for S under M.

The notion of a witness is indeed weaker than the notion of a strong witness as the next result
shows.

Proposition 3.28 Let M = (R1, R2, �) be a mapping, where � is a finite set of st-tgds, and S an
instance of R1. Then every strong witness for S under M is a witness for S under M.

Proof. The proposition is a corollary of the fact that if M = (R1, R2, �), with � a set of st-tgds,
and S1, S2 are instances of R1 such that S1 ⊆ S2, then SolM(S2) ⊆ SolM(S1). �

Proposition 3.29 Let M = (R1, R2, �) be a mapping, where � is a finite set of st-tgds, and S an
instance of R1. If T is a universal solution for S under M, then T is a witness solution for S under M.

58 3. METADATA MANAGEMENT

Proof. In the proof of Proposition 3.19, we show that if T is a universal solution for S under M and
T ∈ SolM(S′), then SolM(S) ⊆ SolM(S′) (this is a corollary of the fact that a mapping specified
by a finite set of st-tgds is closed under target homomorphisms). Thus, we have already provided a
proof of the proposition. �

We now show that the notion of witness solution can be used to characterize the existence of
maximum recoveries.

Theorem 3.30 Let M be a mapping from a schema R1 to a schema R2. Then M has a maximum
recovery if and only if every instance S ∈ Dom(M) has a witness solution under M.

Proof. (⇒) Let M′ be a maximum recovery of M, and S an instance in Dom(M). Then given that
M′ is a recovery of M, we have that there exists an instance T of R2 such that (S, T) ∈ M and
(T , S) ∈ M′. Next, we show that T is a witness solution for S under M. We already know that
T is a solution for S under M, so we only need to show that if T ∈ SolM(S′), then it holds that
SolM(S) ⊆ SolM(S′). Then assume that T ′ ∈ SolM(S). Given that (S′, T) ∈ M, (T , S) ∈ M′
and (S, T ′) ∈ M, we have that (S′, T ′) ∈ M ◦ M′ ◦ M. But from Proposition 3.26, we have that
M = M ◦ M′ ◦ M, and, therefore, (S′, T ′) ∈ M. We conclude that SolM(S) ⊆ SolM(S′), and,
hence, T is a witness solution for S under M.

(⇐) Assume that every S ∈ Dom(M) has a witness solution under M, and let M
 be a
mapping from R2 to R1 defined as:

{(T , S) | T is a witness solution for S under M}.
By hypothesis, we have that M
 is a recovery of M. Next, we use Proposition 3.26 to show that
M
 is a maximum recovery of M.

By definition of M
, we have that this mappings satisfies condition (1) in Proposition 3.26.
Moreover, given that M
 is a recovery of M, we have that M ⊆ M ◦ M
 ◦ M.Thus, we have from
Proposition 3.26 that if M ◦ M
 ◦ M ⊆ M, then M
 is a maximum recovery of M. Let (S, T) ∈
M ◦ M
 ◦ M.Then there exist instances T1, S1 of R2 and R1, respectively, such that (S, T1) ∈ M,
(T1, S1) ∈ M
 and (S1, T) ∈ M.Thus,by definition of M
,we have that T1 is a witness solution for
S1 under M. Hence, given that T1 ∈ SolM(S), we have that SolM(S1) ⊆ SolM(S). We conclude
that T ∈ SolM(S) since T ∈ SolM(S1), and, thus, we have that (S, T) ∈ M, which was to be
shown. This concludes the proof of the theorem. �

As a corollary of Proposition 3.29 and Theorem 3.30, we obtain the desired result that every mapping
specified by a finite set of st-tgds admits a maximum recovery. It should be noticed that this result
is in sharp contrast with the non-existence result for the notion of Fagin-inverse for the class of
mappings specified by st-tgds (see Corollary 3.16).

Theorem 3.31 Every mapping specified by a finite set of st-tgds admits a maximum recovery.

3.3. INVERTING SCHEMA MAPPING 59

Up to this point, we have introduced two alternative inverse operators for schema mappings: Fagin-
inverses and maximum recoveries. Thus, it is natural to ask what is the relationship between these
concepts. We now show that for the class of mappings for which the notion of Fagin-inverse is
appropriate, the notion of maximum recovery strictly generalizes the notion of Fagin-inverse.

Proposition 3.32

(1) There exists a mapping specified by a finite set of st-tgds that is not Fagin-invertible but has a
maximum recovery.

(2) For every total, closed-down on the left and Fagin-invertible mapping M, a mapping M′ is a
Fagin-inverse of M if and only if M′ is a maximum recovery of M.

Proof. Part (1) is a consequence of Corollary 3.16 and Theorem 3.31. Part (2) is left as an exercise
for the reader. �

Given that Fagin-inverses are not guaranteed to exist for the class of mappings specified by st-tgds,
we studied in Section 3.3.1 the decidability of Fagin-invertibility for this type of mappings. On the
other hand, the problem of checking whether a mapping M has a maximum recovery becomes trivial
in this context, as every mapping specified by this type of dependencies admits a maximum recovery.
Thus, we only consider here the problem of checking, given mappings M and M′ specified by
st-tgds, whether M′ is a maximum recovery of M. Somewhat surprisingly, not only is this problem
undecidable, but also so is the problem of checking whether a mapping M′ is a recovery of a mapping
M.

Theorem 3.33 The problem of checking, given mappings M = (R1, R2, �12) and M′ =
(R2, R1, �21) with �12 and �21 finite sets of st-tgds, whether M′ is a recovery (maximum recovery) of
M is undecidable.

As we have mentioned in the previous sections, we are still missing the algorithms for computing the
inverse operators introduced in this chapter. In the next section, we present a unified algorithm for
computing these operators, which uses some query rewriting techniques and takes advantage of the
tight connection between the notions of Fagin-inverse and maximum recovery shown in Proposition
3.32.

3.3.3 COMPUTING THE INVERSE OPERATOR
Up to this point, we have introduced and compared two notions of inverse proposed in the literature,
focusing mainly on the problem of the existence of such inverses. Arguably, the most important
problem about these operators is the issue of how to compute them for the class of mappings
specified by st-tgds. In this section, we present an algorithm for computing maximum recoveries
of mappings specified by st-tgds, which by the results of the previous sections can also be used to

60 3. METADATA MANAGEMENT

compute Fagin-inverses for this type of mappings. Interestingly, this algorithm is based on query
rewriting, which greatly simplifies the process of computing such inverses.

We start by recalling the definition of query rewritability over the source from Section 2.4.2.
Let M be a mapping from a schema R1 to a schema R2 and Q a query over schema R2. Then a
query Q′ is said to be a rewriting of Q over the source if Q′ is a query over R1 such that for every
S ∈ Inst(R1), it holds that Q′(S) = certainM(Q, S).That is, it is possible to obtain the set of certain
answers of Q over S under M by just evaluating its rewriting Q′ over the source S.

The computation of a source rewriting of a conjunctive query is a basic step in the algorithm
presented in this section. This problem has been extensively studied in the database area and, in
particular, in the data integration context. In fact, it is well known that:

Proposition 3.34 There exists an algorithm QueryRewriting that, given a mapping M =
(R1, R2, �), with � a finite set of st-tgds, and a conjunctive query Q over R2, computes a union of
conjunctive queries with equality Q′ that is a rewriting of Q over the source. The algorithm runs in
exponential time and its output is of exponential size in the size of � and Q.

Example 3.35 We give here some intuition of why the algorithm QueryRewriting uses union
and equalities in its output language. Let R1 be a schema consisting of a unary relation P and a
binary relation R, R2 be a schema consisting of a binary relation T and M = (R1, R2, �), where
� is a set of dependencies consisting of the following st-tgds:

P(x) → T (x, x),

R(x, y) → T (x, y).

Assume that Q is the target query T (x, y). What is a source rewriting of Q? To answer this question,
we need to consider all the possible ways of generating target tuples from a source instance. Let S

be an instance of R1. If S contains a fact P(a), then all the solutions for S under M will contain
the fact T (a, a). Thus, every answer to the query P(x) ∧ x = y over S will be in certainM(Q, S).
In the same way, if S contains a fact R(a, b), then all the solutions for S under M will contain the
fact T (a, b) and, hence, every answer to the query R(x, y) over S will be in certainM(Q, S). Given
the definition of M, the previous two queries consider all the possible ways to generate target tuples
according to M, from which one can formally prove that the following is a source rewriting of query
Q:

(P (x) ∧ x = y) ∨ R(x, y).

It is important to notice that the above query is a union of two conjunctive queries, and that the use
of union and equality in this rewriting is unavoidable. �

We finally have all the necessary ingredients to present the algorithm for computing maximum
recoveries. In this procedure,C refers to the unary predicate introduced in Section 2 that distinguishes

3.3. INVERTING SCHEMA MAPPING 61

between constant and null values (C(a) holds if and only if a belongs to Const). Moreover, if
x̄ = (x1, . . . , xk), then C(x̄) is used in the algorithm as a shorthand for C(x1) ∧ · · · ∧ C(xk).

Algorithm 3 MaximumRecovery
Require: M12 = (R1, R2, �) with � a finite set of st-tgds
Ensure: M21 = (R2, R1, �) is a maximum recovery of M

1: � := ∅
2: for all ϕ(x̄) → ∃ȳ ψ(x̄, ȳ) in � do
3: Q(x̄) := ∃ȳ ψ(x̄, ȳ)

4: let α(x̄) be the output of algorithm QueryRewriting with input M12 and Q

5: � := � ∪ {ψ(x̄, ȳ) ∧ C(x̄) → α(x̄)}
6: end for

Theorem 3.36 Algorithm MaximumRecovery runs in exponential time, and on input M =
(R1, R2, �), where � is a finite set of st-tgds, it computes a maximum recovery of M.

Proof. From Proposition 3.34, it is straightforward to conclude that algorithm MaximumRecovery
runs in exponential time. Assume that M′ = (R1, R2, �) is the output of the algorithm
MaximumRecovery with input M. In order to prove that M′ is a maximum recovery of M,
we first show that M′ is a recovery of M, that is, we prove that for every instance S of R1, it holds
that (S, S) ∈ M ◦ M′.

Let S be an instance of R1 and let T be the canonical universal solution for S under M. Next,
we show that (T , S) ∈ M′, from which we conclude that (S, S) ∈ M ◦ M′ since (S, T) ∈ M. Let
σ ∈ �. We need to show that (T , S) |= σ . Assume that σ is of the form ψ(x̄, ȳ) ∧ C(x̄) → α(x̄),
and that ā is a tuple of values from T such that T |= ∃ȳ (ψ(ā, ȳ) ∧ C(ā)). We need to show
that S |= α(ā). Consider the conjunctive query Q(x̄) defined by formula ∃ȳ ψ(x̄, ȳ). Since C(ā)

holds and T |= ∃ȳ ψ(ā, ȳ), we obtain that ā ∈ Q(T). Thus, from the results about query answering
proved in Section 2.4 and the fact that T is the canonical universal solution for S under M, we
obtain that ā ∈ certainM(Q, S). Consider now the query Q′(x̄) defined by formula α(x̄). By the
definition of algorithm MaximumRecovery, we have that Q′ is a rewriting of Q over schema R1,
and then certainM(Q, S) = Q′(S). Thus, we have that ā ∈ Q′(S), and then S |= α(ā), which was
to be shown.

Given that M′ is a recovery of M and Dom(M) = Inst(R1), we know from Proposition
3.26 that M′ is a maximum recovery of M if M ◦ M′ ◦ M ⊆ M. Next, we show that if (S1, S2) ∈
M ◦ M′, then SolM(S2) ⊆ SolM(S1), from which we conclude that M ◦ M′ ◦ M ⊆ M.To see
why this is the case, let (S, T) ∈ M ◦ M′ ◦ M. Then there exist instances T1, R1 of R2 and R1,
respectively, such that (S, T1) ∈ M, (T1, S1) ∈ M′ and (S1, T) ∈ M. Then given that (S, S1) ∈

62 3. METADATA MANAGEMENT

M ◦ M′, we have by hypothesis that SolM(S1) ⊆ SolM(S).Thus, from the fact that (S1, T) ∈ M,
we conclude that (S, T) ∈ M, which was to be shown.

Let (S1, S2) ∈ M ◦ M′, and T
 an instance of R2 such that (S1, T

) ∈ M and (T
, S2) ∈

M′. We need to prove that SolM(S2) ⊆ SolM(S1).To this end, assume that T ∈ SolM(S2). Next,
we show that T ∈ SolM(S1). Let σ ∈ � be a dependency of the form ϕ(x̄) → ∃ȳ ψ(x̄, ȳ), and
assume that S1 |= ϕ(ā) for some tuple ā of constant values. We show next that T |= ∃ȳ ψ(ā, ȳ).
Given that S1 |= ϕ(ā), we have that for every T ′ ∈ SolM(S1), it holds that T ′ |= ∃ȳ ψ(ā, ȳ). In
particular, it holds that T
 |= ∃ȳ ψ(ā, ȳ). By the definition of algorithm MaximumRecovery, we
know that there exists a dependency ψ(x̄, ȳ) ∧ C(x̄) → α(x̄) in � such that α(x̄) is a rewriting of
∃ȳ ψ(x̄, ȳ) over R1. Then since T
 |= ∃ȳ ψ(ā, ȳ), ā is a tuple of constant values, and (T
, S2) |= �,
we know that S2 |= α(ā). Now consider the queries Q(x̄) and Q′(x̄) defined by formulas ∃ȳ ψ(x̄, ȳ)

and α(x̄), respectively. Since S2 |= α(ā), we know that ā ∈ Q′(S2). Furthermore, we know that
Q′(S2) = certainM(Q, S2), and then ā ∈ certainM(Q, S2). In particular, since T ∈ SolM(S2), we
know that ā ∈ Q(T), from which we conclude that T |= ∃ȳ ψ(ā, ȳ). We have shown that for every
σ ∈ � of the form ϕ(x̄) → ∃ȳ ψ(x̄, ȳ), if S1 |= ϕ(ā) for some tuple ā, then T |= ∃ȳ ψ(ā, ȳ).Thus,
we have that (S1, T) |= �, and, therefore, T ∈ SolM(S1). This concludes the proof of the theorem.
�

Example 3.37 Let R1 be a schema consisting of a unary relation P and a binary relation R, R2 be
a schema consisting of a binary relation T and M = (R1, R2, �), where � is a set of dependencies
consisting of the following st-tgds:

P(x) → T (x, x),

R(x, y) → T (x, y).

In order to compute a maximum recovery M′ = (R2, R1, �) of M, algorithm MaximumRecovery
first computes a source rewriting of target query T (x, x):

P(x) ∨ R(x, x),

and it adds dependency

T (x, x) ∧ C(x) → P(x) ∨ R(x, x) (3.13)

to �. Then it computes a rewriting of target query T (x, y) (see Example 3.35):

(P (x) ∧ x = y) ∨ R(x, y),

and it finishes by adding dependency

T (x, y) ∧ C(x) ∧ C(y) → (P (x) ∧ x = y) ∨ R(x, y) (3.14)

to �. Given that (3.14) logically implies (3.13), we conclude that the mapping specified by depen-
dency (3.14) is a maximum recovery of M. �

3.3. INVERTING SCHEMA MAPPING 63

From Theorem 3.36 and Proposition 3.32, we conclude that algorithm MaximumRecovery can also
be used to compute Fagin-inverses.

Corollary 3.38 Let M = (R1, R2, �), where � is a finite set of st-tgds. If M is Fagin-invertible,
then on input M, algorithm MaximumRecovery computes a Fagin-inverse of M.

One of the interesting features of algorithm MaximumRecovery is the use of query rewriting, as
it allows one to reuse in the computation of the inverse operator the large number of techniques
developed to deal with the problem of query rewriting. However, one can identify one drawback in
this procedure. Algorithm MaximumRecovery returns mappings that are specified by dependencies
that extend st-tgds with disjunctions in the right-hand side. Unfortunately, this type of mappings
are difficult to use in the data exchange context. In particular, it is not clear whether the standard
chase procedure could be used to produce a single canonical target database in this case, thus making
the process of exchanging data and answering target queries much more complicated.Therefore, it is
natural to ask whether the use of disjunction in the output language of algorithm MaximumRecovery
can be avoided and, in particular, whether the maximum recovery of a mapping specified by st-tgds
can be specified in the same mapping language. We conclude this section by giving a negative answer
to this question not only for the notion of maximum recovery but also for the notion of Fagin-inverse.

Proposition 3.39 There exists a mapping M = (R1, R2, �) specified by a finite set � of st-tgds that
is Fagin-invertible but has no Fagin-inverse specified by a finite set of tgds.

Proof. Let R1 be a schema consisting of a unary predicate A and a binary predicate B, R2 a schema
consisting of unary predicates D, E and a binary predicate F , and � a set consisting of the following
st-tgds:

A(x) → D(x),

A(x) → F(x, x),

B(x, y) → F(x, y),

B(x, x) → E(x).

It is possible to prove that M is Fagin-invertible but has no Fagin-inverse specified by a finite set
of tgds. �

Proposition 3.39 shows that the language of tgds is not closed under the notion of Fagin-inverse.
By combining this result with Proposition 3.32, we conclude that the same holds for the notion of
maximum recovery.

Corollary 3.40 There exists a mapping M = (R1, R2, �) specified by a finite set � of st-tgds that has
no maximum recovery specified by a finite set of tgds.

64 3. METADATA MANAGEMENT

3.4 SUMMARY
• The semantics of the composition operator for schema mappings can be defined as the usual

composition of binary relations.

• There exist two mappings specified by finite sets of st-tgds whose composition is not even
definable in first-order logic, let alone by st-tgds.

• The language of second-order tuple-generating dependencies is the right language for handling
the composition of mappings. First, it is closed under composition. Second, every mapping
from this class arises as the composition of several mappings based on st-tgds.

• The key issue in the study of the inverse operator for schema mappings is to provide a good
semantics for it.

• A mapping M′ is a Fagin-inverse of a mapping M if the composition of M with M′ is equal
to the identity mapping. There exists a mapping specified by a finite set of st-tgds that does
not admit a Fagin-inverse.

• The main goal behind the notion of recovery is to give a formal definition for what it means
for a mapping M′ to recover sound information with respect to a mapping M. A maximum
recovery is a recovery that brings back the maximum amount of sound information.

• The notions of recovery and maximum recovery were introduced to overcome some of the
limitations of Fagin-inverses. In particular, every mapping specified by a finite set of st-tgds
admits a maximum recovery.

3.5 BIBLIOGRAPHIC COMMENTS
The composition operator for schema mappings has been extensively studied [Arenas et al., 2009b,
2010; Bernstein, 2003; Bernstein et al., 2008; Fagin et al., 2005c; Libkin and Sirangelo, 2008;
Madhavan and Halevy, 2003; Nash et al., 2007; Yu and Popa, 2005]. The semantics of the com-
position presented in Section 3.2 was introduced by Fagin et al. [2005c]. The authors have shown
that the composition problem is NP-complete; from this it follows that there exist mappings spec-
ified by st-tgds whose composition cannot be expressed in first-order logic. Fagin et al. [2005c]
propose the language of second-order tuple-generating dependencies (SO tgds) and study its basic
properties.

The notion of Fagin-inverse was proposed by Fagin [2007]. Fagin called it just an inverse
as it was the first notion of an inverse of a schema mapping. We reserve the term inverse to refer
to the general operator and use the name Fagin-inverse for the notion proposed by Fagin [2007].
The problem of existence of Fagin-inverses was also studied by Fagin et al. [2008] and Arenas et al.
[2009d]. Complexity issues related to the notion of Fagin-inverse were studied by Arenas et al.
[2009d]; Fagin [2007]; Fagin and Nash [2010].

3.5. BIBLIOGRAPHIC COMMENTS 65

The notions of recovery and maximum recovery were proposed by Arenas et al. [2009d].
The authors proved the necessary and sufficient condition for the existence of maximum recoveries
given in this chapter and showed that every mapping specified by a finite set of st-tgds admits a
maximum recovery.They also established the tight connection between the notions of Fagin-inverse
and maximum recovery. The algorithm for computing Fagin-inverses and maximum recoveries
presented in this chapter was proposed by Arenas et al. [2009c,d]. Finally, results about languages
needed to express Fagin-inverses and maximum recoveries were given by Fagin et al. [2008] and
Arenas et al. [2009d], respectively.

67

C H A P T E R 4

XML Mappings and Data
Exchange

4.1 XML DATABASES
We begin this chapter by introducing formally an abstract model of XML databases. In this model,
data are organized into trees, and queries are expressed with patterns. Compared to the relational
model, the tree model gives more opportunities for expressing structural properties of data even
with simple queries based on patterns. On the other hand, schemas impose strong conditions on the
structure of source and target instances, entering into complex interactions with source-to-target
dependencies, which makes consistency one of the central issues in XML data exchange.

4.1.1 XML DOCUMENTS AND DTDS
Just as relations are abstractions of tables, trees are abstractions of XML documents. Let us look at a
concrete example, shown in Fig. 4.2. In this tree,europe,country, and ruler are node labels.They
come from a finite labeling alphabet and correspond to relation names from the classical setting.The
values given in parentheses are so called data values, and they come from a possibly infinite set (in our
example, the set of strings over a finite alphabet). Thus each country-node and each ruler-node
has an attribute that stores a data value.

Formally, we view XML documents over a labeling alphabet � of element types and a set of
attributes Att as structures

T = 〈U, ↓, →, lab, (ρa)a∈Att〉,
where

europe

country

(Scotland)

ruler

(James V)

ruler

(Mary I)

ruler

(James VI & I)

ruler

(Charles I)

country

(England)

ruler

(Elizabeth I)

ruler

(James VI & I)

ruler

(Charles I)

Figure 4.1: An XML tree.

68 4. XML MAPPINGS AND DATA EXCHANGE

• U is an unranked tree domain: that is, a finite subset of N∗ (the set of strings of natural
numbers) that is prefix-closed, and if n · i ∈ U , then n · j ∈ U for all j < i (these strings are
nodes of a tree: if n is a node tree with m children, then those children are represented by the
strings n · 0, . . . , n · (m − 1));

• the binary relations ↓ and → are the child relation (n ↓ n · i) and the next sibling relation
(n · i → n · (i + 1));

• lab : U → � is the labeling function; and

• each ρa is a partial function from U to Const, the domain of attribute values, that gives the
values of a for all the nodes in U where it is defined.

A DTD D over � with a distinguished symbol r (for the root) and a set of attributes Att consists
of a mapping PD from � to regular expressions over � − {r} (one typically writes them as produc-
tions
 → e if PD(
) = e), and a mapping AD : � → 2Att that assigns a (possibly empty) set of
attributes to each element type. We always assume, for notational convenience, that attributes come
in some order, just like in the relational case: attributes in tuples come in some order so we can write
R(a1, . . . , an). Likewise, we shall describe an
-labeled tree node with n attributes as
(a1, . . . , an).

A tree T conforms to a DTD D (written as T |= D) if its root is labeled r , the set of attributes
for a node labeled
 is AD(
), and the labels of the children of such a node, read left-to-right, form
a string in the language of PD(
).

For example the tree from Fig. 4.1 conforms to the following DTD D1

europe → country∗ country : @name
country → ruler∗ ruler : @name

where the left column lists the mapping PD , and the right column lists the mapping AD . By con-
vention we omit ε-productions on the left, and empty sets on the right.

We shall also refer to a class of nested-relational DTDs; as the name suggests, they generalize
nested relations. In such DTDs, all productions are of the form
 →
̂1 . . .
̂m, where all
i ’s are
distinct labels from �and
̂i is either
i or
∗

i or
+
i or
i? =
i |ε. Moreover, such DTDs are not

recursive, i.e., the graph in which we put an edge between
 and all the
i ’s for each production has
no cycles. An example of a nested-relational DTD is D1 considered above.

Nested-relational DTDs are very common in practice: some empirical studies suggest that
they cover about 70% of real-world DTDs. As we will see shortly, many computational problems
become easier for them.

4.1.2 EXPRESSING PROPERTIES OF TREES
Let us return to the example from Fig. 4.1. Observe that information is represented by means of
data values, as well as the structure of the tree. For instance, the edge between the node storing
Scotland and the node storing Mary I represents the fact that Mary I ruled Scotland. The value
Charles I appearing twice informs us that Charles I ruled both Scotland and England. The node

4.1. XML DATABASES 69

storing Mary I coming directly after the node storing James V corresponds to the fact that Mary I
succeeded James V on the throne of Scotland. This already suggests the querying features we need
to extract information from XML trees: child, next sibling, and their transitive closures: descendant,
following sibling. It is also necessary to compare data values stored in different nodes.

Given the developments of the preceding chapters, a natural query language for XML trees is
the family of conjunctive queries over XML trees viewed as databases over two sorts of objects: tree
nodes and data values. Relations in such representations include child, next sibling, and relations
associating attribute values with nodes.

To avoid the syntactically unpleasant formalism of two-sorted structures, conjunctive queries
on trees are best formalized by means of tree patterns with variables for attribute values. Nodes are
described by formulae
(x̄), where
 is either a label or the wildcard _, and x̄ is a tuple of variables
corresponding to the attributes of the node. For each node a list of its children and descendants is
specified, together with (partial) information on their order.

Formally, tree patterns are given by the following grammar:

π :=
(x̄)[λ] patterns
λ := ε | μ | //π | λ, λ sets
μ := π | π → μ | π →∗ μ sequences

(4.1)

We shall abbreviate
(x̄)[ε] to just
(x̄),
(x̄)[π] to
(x̄)/π , and
(x̄)[//π] to
(x̄)//π . We write
π(x̄) to indicate that x̄ is the list of variables used in π . For instance,

π1(x) = europe[//ruler(x)] ,

π2(x, y) = europe[country[ruler(x) → ruler(y)]]

can be shortly written as

π1(x) = europe//ruler(x) ,

π2(x, y) = europe/country[ruler(x) → ruler(y)] .

70 4. XML MAPPINGS AND DATA EXCHANGE

The semantics of patterns is defined by means of the relation (T , s) |= π(ā), saying that π(x̄)

is satisfied in a node s of a tree T when its variables x̄ are interpreted as ā. It is defined inductively
as follows:

(T , s) |=
(ā) iff s is labeled by
 (or
 = _) and ā is the tuple of
attributes of s;

(T , s) |=
(ā)[λ1, λ2] iff (T , s) |=
(ā)[λ1] and (T , s) |=
(ā)[λ2];
(T , s) |=
(ā)[μ] iff (T , s) |=
(ā) and (T , s′) |= μ for some s′ with s ↓ s′;

(T , s) |=
(ā)[//π] iff (T , s) |=
(ā) and (T , s′) |= π for some descendant s′ of s;

(T , s) |= π → μ iff (T , s) |= π and (T , s′) |= μ for some s′ with s → s′;

(T , s) |= π →∗ μ iff (T , s) |= π and (T , s′) |= μ for some s′ with s →∗ s′.
Observe that semantically “sets” in tree patterns are literally sets: for a node satisfying
(ā)[λ1, λ2],
the nodes witnessing λ1 are not necessarily distinct from the ones witnessing λ2.

For a tree T and a pattern π , we write T |= π(ā) iff (T , r) |= π(ā), that is, patterns are
witnessed at the root. This is not a restriction since we have descendant // in the language, and
we can thus express satisfaction of a pattern in an arbitrary node of a tree. We also denote the set
{ā | T |= π(ā)} by π(T).

If T is the tree from Fig. 4.1,

π1(T) = {James V, Mary I, James VI & I, Charles I, Elizabeth I} ,

π2(T) = {(James V, Mary I), (Mary I, James VI & I), (James VI & I, Charles I),
(Elizabeth I, James VI & I)} .

Observe that the patterns already can express equalities between data values by simply repeating
variables. For instance

europe[country/ruler(x) →∗ country/ruler(x)]
lists the rulers that ruled more than one country (→∗ is the transitive closure of →, not reflexive-
transitive). Inequalities have to be added explicitly.To keep the setting uniform, we also allow explicit
equalities.

Generalized tree patterns are expressions of the form π(x̄) ∧ α(x̄), where π(x̄) is a tree pattern
and α(x̄) is a conjunction of equalities and inequalities among variables x̄.The semantics is naturally
extended:

T |= π(ā) ∧ α(ā) iff T |= π(ā) and α(ā) holds.

For example the pattern

europe[country[ruler(y) → ruler(x)], country[ruler(z) → ruler(x)]] ∧ y �= z

expresses the fact that x succeeded two different rulers, y and z.

4.1. XML DATABASES 71

From now on, whenever we write pattern, we mean generalized tree pattern. The non-
generalized tree patterns are referred to as pure patterns.

Classification of patterns. In our analysis,we often consider patterns with a restricted set of available
axes and comparisons.We denote classes of patterns by �(σ),where σ is a signature indicating which
axes and comparisons are present.We refer to the usual navigational axes as ↓ (child),↓∗ (descendant),
→ (next-sibling),→∗ (following-sibling).Equality and inequality requires some explanation.Having
�= in σ means that we can use conjuncts of the form x �= y in the patterns; having = in σ means
that we can use explicit equalities x = y in patterns, as well as reuse variables. If = is not in σ , we
are only allowed to reuse variables in inequalities (if �= is in σ) or nowhere at all. We also specify if
_ (wildcard) can be used or not. If not, only
(x̄) with
 ∈ � are allowed.

Abbreviations. To save space, we often write ⇓ for the pair (↓, ↓∗), and ⇒ for the pair (→, →∗).

A pure tree pattern can be seen as a tree-like structure

Sπ = 〈U, ↓, ↓∗, →, →∗, lab, π, ρ〉,
where U is the set of (occurrences of) sub-patterns of π of the form
(x̄)[λ], with lab and ρ

naturally defined as lab(
(x̄)[λ]) =
 and ρ(
(x̄)[λ]) = x̄.The relation ↓ contains all pairs π1, π2 ∈
U such that the set under the head of π1 contains a list that contains π2, i.e., π1 =
(x̄)[λ, μ �

π2 � μ′, λ′], where � is → or →∗, and all λ, λ′, μ, μ′ can be empty. Similarly, (π1, π2) ∈↓∗ iff
π1 =
(x̄)[λ, //π2, λ

′], (π1, π2) ∈→ iff π contains (syntactically) π1 → π2, and (π1, π2) ∈→∗ iff
π contains π1 →∗ π2.

Under this interpretation, there exists a natural notion of homomorphism. Let T = 〈U1, ↓
, →, lab1, r1, ρ1〉. A homomorphism between π and T is a function that maps U into U1, and the
variables of π into the attribute values of T such that for all π1, π2 ∈ U the following conditions
hold:

1. h(π) = r1;

2. if lab(π1) �= _ , then lab(π1) = lab1(h(π1));

3. if π1 ↓ π2 in Sπ , then h(π1) ↓ h(π2) in T1;

4. if π1 ↓∗ π2 in Sπ , then h(π1) ↓∗ h(π2) in T1;

5. if π1 → π2 in Sπ , then h(π1) → h(π2) in T1;

6. if π1 →∗ π2 in Sπ , then h(π1) →∗ h(π2) in T1;

7. if ρ(π1) is not empty sequence, then h(ρ(π1)) = ρ1(h(π1)).

Note that while in T the relations ↓∗ and →∗ are externally defined as transitive closures of ↓ and
→, in Sπ , they are built-in relations. In fact, ↓ ∩ ↓∗= ∅ and → ∩ →∗= ∅, but all four relations can
be extended in such a way that the structure becomes a proper tree.

For a generalized pattern π = π0 ∧ α, a homomorphism from π to T is a homomorphism
from π0 to T such that

72 4. XML MAPPINGS AND DATA EXCHANGE

1. for every equality x = y in α, h(x) = h(y);

2. for every inequality x �= y in α, h(x) �= h(y).

In either case, we write h : π → T instead of the more formal h : Sπ → T .
An immediate observation is that the semantics of tree pattern satisfaction can be stated in

terms of homomorphisms:

Lemma 4.1 T |= π iff there exists a homomorphism from π to T .

We now look at basic decision problems related with satisfiability and evaluation of patterns. We
start with data and combined complexity of evaluating tree patterns. For data complexity, we fix a
pattern π , and we want to check for a given tree T and a tuple ā whether T |= π(ā). For combined
complexity, the question is the same, but the input includes T , ā and π .

Since patterns are essentially conjunctive queries over trees, the data complexity is in Logspace
(and the bound cannot be lowered in general, since transitive closures of ↓ and → may have to be
computed). And since they are nicely structured conjunctive queries, the combined complexity is
tractable as well. More precisely, we have:

Proposition 4.2 The data complexity of evaluating tree patterns is Logspace-complete,and the combined
complexity is in Ptime.

Proof. Take a tree pattern π , a valuation ā and a tree T . Checking that T |= π [ā] can be done in
Ptime by a bottom up evaluation of the sub-patterns of π [ā]. The idea is to annotate each node
v with a set �(v) containing the sub-formulae of π [ā] satisfied in v. More precisely, if v is a leaf
labeled with σ and storing a tuple b̄, let �(v) contain all sub-patterns of π [ā] of the form σ ′(b̄),
with σ ′ ∈ {σ, _}. If v is an internal node labeled with σ , having children v1, v2, . . . , vk , and storing
a tuple b, let �(v) contain all sub-patterns of π [ā] of the form σ ′(b̄)[λ1, λ2, . . . , λp] satisfying

• σ ′ ∈ {σ, _},
• for each λi = //π1 there exists a node vj such that //π1 ∈ �(vj) or π1 ∈ ϕ(vj),

• for each λi = π1 �1 π2 �2 . . . �r−1 πr there exists a sequence 1 ≤ n1 < n2 < . . . < nr ≤
k such that πj ∈ �(vnj

), and if �j=→ then nj+1 = nj + 1 for all j ,

and all sub-patterns of π [ā] of the form //π1 satisfying π1 ∈ �(vj) or //π1 ∈ �(vj) for some j .
The answer is “yes” iff π [ā] ∈ �(ε), where ε is the root of the tree.

Let us now consider the data-complexity. Tree patterns can be viewed as first order queries
over signature extended with descendent and following-sibling, and so can be evaluated in Logspace,
provided we can evaluate descendant and following-sibling tests in Logspace.This can be done since
the next-sibling relation graph has the out-degree at most one, and for the child relation graph, the
same holds if we only reverse edges. Logspace-hardness follows from the hardness of reachability

4.1. XML DATABASES 73

r

a

a1

a2

a3

b

c a4

e

a5 a6

r

a a2

a3

b

c a4

e

Figure 4.2: A homomorphism from r[//a, //b/c, //e] into a tree and its support.

over successor-relations; hence, even evaluating r[a →∗ b], over a tree of depth 1, is Logspace-hard.
�

The next problem is the satisfiability for tree patterns. Its input consists of a DTD D and a pattern
π(x̄); the problem is to check whether there is a tree T that conforms to D and has a match for π

(i.e., π(T) �= ∅).

Theorem 4.3 The satisfiability problem for tree patterns in NP-complete.

Proof. We shall need the following notion. The support of a homomorphism h : π → T , denoted
supp h, is the subtree of T obtained by removing all nodes that cannot be reached from range of h

by going up, left, and right. For example, consider a tree pattern r[//a, //b/c, //e]. This pattern is
satisfied by a tree T given in Figure 4.2 with the obvious homomorphism h which appropriately
assigns sub-formulae to the encircled nodes. To obtain supp h, we remove all nodes except from
ancestors of the nodes from the range of h, and their siblings. The result is shown in Figure 4.2.

Now we show that for each pattern π satisfiable with respect to a DTD D over �, there exists
a homomorphism from π to some T conforming to D with O(||π || · ||D||) support.Take an arbitrary
T conforming to D and satisfying π . Let h be a homomorphism from π to T . Divide the nodes of
supp h into four categories: the nodes from the image of h are red, the nodes that are not red and
have more than one child that is an ancestor of a red node (or is red itself) are green, the others are
yellow if they are ancestors of red nodes, and blue otherwise. For example, in Figure 4.2, the encircled
nodes are red, a2 is green, a3 is yellow, and a4 is blue. Let Nred, Ngreen, Nyellow, and Nblue be the
numbers of red, green, yellow, and blue nodes.

By definition, Nred ≤ ||π ||. Also Ngreen ≤ ||π ||: when going bottom-up, each green node de-
creases the number of subtrees containing a red node by at least one, and since we arrive at the root
with one subtree containing a red node, Ngreen ≤ Nred. By a pumping argument, we may assume that

74 4. XML MAPPINGS AND DATA EXCHANGE

all yellow paths in supp h are not longer than |�| ≤ ||D||. Similarly, all blue sequences of siblings in
supp h are not longer than the maximal number of states in the automata representing the regular
expressions in D, which can also be bounded by ||D||. The number of (maximal) yellow paths is
at most Nred + Ngreen. Hence there are at most 2||π || · ||D|| yellow nodes. Since all blue nodes are
siblings of nodes of other colors, the number of (maximal) blue sequences of siblings is at most
2(Nred + Ngreen + Nyellow) ≤ 4||π || · (||D|| + 1) and so Nblue ≤ 4||π || · (||D|| + 1)||D||. Altogether,
we have at most 2||π ||(||D|| + 1)(2||D|| + 1) ≤ 12||π || · ||D||2 nodes.

Now, to decide satisfiability, first guess a polynomial support and a homomorphism. Verifying
the homomorphism is polynomial in the size of the formula and the support, hence it is polynomial.
Verifying that the support is actually a restriction of a tree conforming to D requires a consistency
check, which amounts to checking if a given word is in the language defined by a given regular
expression and checking if a regular expression defines a nonempty language (for the labels of yellow
nodes). Both these checks can be done in polynomial time.

To get NP-completeness, we do a standard 3CNF SAT reduction. In fact, we only use
patterns from �(↓, _) without variables. Take a formula ψ = ∧k

j=1 Z1
j ∨ Z2

j ∨ Z3
j with Zi

j ∈
{x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. Consider a DTD D

r → x1x2 · · · xn

xi → {Cj

∣∣ ∃
Z

j = xi}|{Cj

∣∣ ∃
Z

j = x̄i} 1 ≤ i ≤ n

over the alphabet {x1, x2, . . . , xn, C1, C2, . . . , Ck}. In the second rule, interpret each set as a con-
catenation of all its elements.

The labels Cj are intended to correspond to Z1
j ∨ Z2

j ∨ Z3
j . Each tree conforming to D

encodes a valuation of all variables xi : for each xi , it stores either all conjuncts made true by assigning
1 to xi or all conjuncts made true by assigning 0 to xi .

The satisfiability of ψ is equivalent to the satisfiability of the pattern r[_/C1, _/C2, . . . , _/Ck]
with respect to D. �

4.2 XML SCHEMA MAPPINGS
XML schema mappings resemble relational mappings. Like before, each mappings consists of a
source schema, a target schema, and a set of source-to-target tuple generating dependencies re-
lating the two schemas. In the XML context, relational schemas are naturally replaced by DTDs.
Dependencies use patterns instead of CQs.

Definition 4.4 An XML schema mapping is a triple M = (Ds, Dt , �st), where Ds is the source
DTD, Dt is the target DTD, and �st is a set of st-tgds of the form

π(x̄, ȳ) → ∃z̄ π ′(x̄, z̄)

where π and π ′ are (generalized) patterns.

4.2. XML SCHEMA MAPPINGS 75

Given a tree S that conforms to Ds and a tree T that conforms to Dt , we say that T is a solution
for S under M if (S, T) satisfy all the st-tgds from �st , i.e., for every st-tgd π(x̄, ȳ) → ∃z̄ π ′(x̄, z̄)

in �st , whenever S |= π(ā, b̄), there exists a tuple of values c̄ such that T |= π ′(ā, c̄). We denote
the set of all solutions under M for S by SolM(S).

The semantics of M is defined as a binary relation

�M� = {
(S, T)

∣∣ S |= Ds, T |= Dt, T ∈ SolM(S)
}

.

�

Example 4.5 Let Ds be the familiar DTD

europe → country∗ country : @name
country → ruler∗ ruler : @name

and let Dt be
rulers → ruler∗ ruler : @name
ruler → successor successor : @name

Assuming the rulers are stored in the chronological order on the source side, a natural schema
mapping M might be defined with the following st-tgd:

europe[ruler(x) → ruler(y)] −→ rulers/ruler(x)/successor(y) .

A natural solution for T1, shown in Fig. 4.1, is the tree T2 in Fig. 4.3. As we already know, every tree
obtained from T2 by adding new children with arbitrary data values, or by permuting the existing
children, is also a solution for T1. For instance, T3 in Fig. 4.3 is as good a solution for T1 as any. �

The XML mappings we have just defined naturally generalize the usual relational mappings.
If we have relational schemas Rs and Rt, they can be represented as DTDs Ds and Dt : for example,
for Rs = {S1(A, B), S2(C, D)}, the DTD Ds has rules r → s1, s2; s1 → t∗1 ; s2 → t∗2 , as well as
t1, t2 → ε, with t1 having attributes A, B, and t2 having attributes C, D. Then each conjunctive
query over a schema is easily translated into a pattern over the corresponding DTD together with
some equality constraints. For example, S1(x, y), S2(y, z) will be translated into

r [s1/t1(x, y1), s2/t2(y2, z)] , y1 = y2.

Of course, equalities can be incorporated into the pattern (i.e., by r[s1/t1(x, y), s2/t2(y, z)]), but
as we said, we often prefer to list them separately to make classification of different types of schema
mappings easier. Note also that these patterns use neither the descendant relation nor the horizontal
navigation nor inequalities.

76 4. XML MAPPINGS AND DATA EXCHANGE

rulers

ruler

(James V)

successor

(Mary I)

ruler

(Mary I)

successor

(James VI & I)

ruler

(James VI & I)

successor

(Charles I)

ruler

(Elizabeth I)

successor

(James VI & I)

(a) T2: a solution for T1

rulers

ruler

(James V)

successor

(Mary I)

ruler

(Mary I)

successor

(James VI & I)

ruler

(James VI & I)

successor

(Charles I)

ruler

(Louis XIII)

successor

(Charles I)

ruler

(Elizabeth I)

successor

(James VI & I)

(b) T3: another possible solution for T1

Figure 4.3: Solutions for T1 under M

Classification of schema mappings We often need to restrict the features available in st-tgds. Using
the notation for patterns, we write SM(�(σ1), �(σ2)) to denote the class of mappings where source
side patterns come from �(σ1) and target side patterns come from �(σ2). To keep the notation as
light as possible, we usually just write SM(σ1; σ2), and SM(σ) if σ1 = σ2 = σ .

For reasons to be explained shortly, we work extensively with nested relational schema mappings,
i.e., schema mappings whose target DTDs are nested relational. By SMnr(σ1; σ2), we denote the
class of nested relational schema mappings in SM(σ1; σ2).

If we use the standard XML encoding of relational databases, then relational schema mappings
fall into the class SMnr(↓, =).

We also write SM◦(σ1; σ2) for mappings where st-tgds in �st do not mention attribute values,
i.e., where all pattern formulae are of the form
[λ]. These will be useful for establishing hardness
results, telling us that structural properties alone make certain problems infeasible.

We now move to the complexity of schema mappings and, just like for patterns, consider two
flavors of it.

• Data complexity of schema mappings is the data complexity of the membership problem: For a
fixed mapping M, check, for two trees S, T , whether (S, T) ∈ �M�.

4.3. STATIC ANALYSIS OF XML SCHEMA MAPPINGS 77

• Combined complexity of schema mappings is the combined complexity of the membership prob-
lem: Check, for two trees S, T and a mapping M, whether (S, T) ∈ �M�.

Compared to patterns, the data complexity remains low; the combined complexity jumps to the
second level of the polynomial hierarchy, but the parameter that makes it jump there is the number
of variables in st-tgds. If we fix that number, even the combined complexity is tractable.

Theorem 4.6 For XML schema mappings

• the data complexity is Logspace-complete;

• the combined complexity is �
p

2 -complete;

• the combined complexity is in Ptime if the maximum number of variables per pattern is fixed.

Proof. (1) Checking if a given tree conforms to a DTD amounts to checking if the sequence of
children of every node belongs to the language given by the appropriate regular expression. This can
be done in Logspace if the DTD is fixed.

Let us now see how to check if S and T satisfy a single constraint π(x̄, ȳ) → ∃z̄ π ′(x̄, z̄).
Let x̄ = x1, x2, . . . , xk , ȳ = y1, y2, . . . , y
, and z̄ = z1, z2, . . . , zm. Let A be the set of data values
used in S or T . We need to check that for each ā ∈ Ak and each b̄ ∈ A
 such that S |= π [ā, b̄]
there exists c̄ ∈ Am such that T |= π ′[ā, c̄]. Since the numbers k,
, m are fixed (as parts of the fixed
mapping), the space needed for storing all three valuations is logarithmic in the size of S and T . Using
Proposition 4.2, we obtain a Logspace algorithm by simply iterating over all possible valuations ā,
b̄, and c̄. Logspace-hardness is shown in the same way as in the proof of Proposition 4.2.

(2) Checking conformance to DTDs can be done in Ptime. Let us concentrate on verifying
the dependencies. Consider the following algorithm for the complementary problem: guess a de-
pendency π(x̄, ȳ) → ∃z̄ π ′(x̄, z̄) and tuples ā, b̄, and check that S |= π(ā, b̄) and T �|= ∃z̄ π ′(ā, z̄).
By Proposition 4.2, the first check is polynomial. The second check, however, involves a tree pattern
possibly containing variables, so it can only be done in coNP. Altogether, the algorithm is in �

p

2 .
Hardness can be obtained via a reduction from the validity of �2 quantified boolean formulae.

(3) Proceed just like in (1). The numbers of variables per pattern is bounded, so there are only
polynomially many possible valuations. Hence, we may iterate over all of them using algorithm from
Proposition 4.2 to check S |= π [ā, b̄] and T |= π ′[ā, c̄]. �

4.3 STATIC ANALYSIS OF XML SCHEMA MAPPINGS
4.3.1 CONSISTENCY
As we already mentioned, XML schema mappings may be inconsistent: there are mappings M so
that �M� = ∅, i.e., no tree has a solution. In addition to consistent mappings, in which some trees
have solutions, we would like to consider mappings in which every tree has a solution.These are very

78 4. XML MAPPINGS AND DATA EXCHANGE

desirable for a variety of reasons: not only are we guaranteed to have possible target documents for
every possible source, but the property is also preserved when we compose mappings.

We start by analyzing consistency. We say that a mapping is consistent if �M� �= ∅; that is, if
SolM(S) �= ∅ for some S |= Ds . The main problem we consider is the following:

Problem: Cons(σ)

Input: A mapping M = (Ds, Dt , �st) ∈ SM(σ)

Question: Is M consistent?

If we use SM◦(σ) instead of SM(σ) (i.e., if we use mappings in which attribute values are not
mentioned at all), we denote the consistency problem by Cons◦(σ).

In the consistency analysis, several tools from automata theory are useful. We recall them now
briefly. We assume that the reader is familiar with the notion of finite automata on words. We write
NFA and DFA for non-deterministic and deterministic finite automata. If A is an automaton, then
L(A) is the language accepted by it. Recall that, given a regular expression e, constructing an NFA
Ae with L(Ae) = L(e) can be done in polynomial time. Finding an equivalent DFA can be done
in exponential time via the well known powerset construction.

A nondeterministic (ranked) finite tree automaton (NFTA) on binary node-labeled trees
over alphabet � is defined as A = 〈Q, q0, δ, F 〉 where Q is the set of states, q0 ∈ Q, F ⊆ Q and
δ : � × Q × Q → 2Q is the transition function. Given a binary tree T , a run of A on T is a function
ρA : T → Q that assigns states to nodes. For a leaf s labeled a, we require that ρA(s) ∈ δ(a, q0, q0),
and for a node s labeled a with two children s1 and s2, we require that ρA(s) ∈ δ(a, ρA(s1), ρA(s2)).
A tree T is accepted if there is a run ρA such that ρA(root) ∈ F . Given an NFTAA, testing whether
L(A) = ∅ can be done in time linear in the size of A. Nonuniversality of A (testing whether there
is a tree not accepted by A) is Exptime-complete.

An unranked nondeterministic finite tree automaton (UNFTA) on ordered unranked node-
labeled trees over alphabet � is defined as A = 〈Q, δ, F 〉 where Q is the set of states, F ⊆ Q and
δ : Q × � → 2Q∗

is the transition function such that δ(q, a) is a regular language for every s ∈ Q

and a ∈ �. Given an ordered unranked tree T , a run of A on T is again a function ρA : T → Q that
assigns states to nodes. If s is a node whose children are s1, . . . , sn ordered by the sibling relation as
s1 → . . . → sn, then the word ρA(s1) . . . ρA(sn) over Q must be in δ(ρA(s), a). In particular, if s

is a leaf, then a run can assign a state q to it iff ε ∈ L(δ(q, a)). A tree T is accepted if there is a run
ρA such that ρA(root) ∈ F . An automaton is deterministic if every tree admits only one run.

The standard representation of UNFTAs uses NFAs for transitions, that is, δ maps pairs
state-letter to NFAs over Q. It is known that testing nonemptiness is again polynomial-time [Neven,
2002]. If an automaton is deterministic and furthermore all transitions are represented by DFAs,
then we refer to UFTA(DFA).

DTDs can naturally be represented by tree automata. We shall consider DTDs without
attributes. Such a DTD D over a set E of element types is represented by an automaton AD ,
in which the set of states is E, and δ(
,
) is defined to be an automaton for P(
), and δ(
,
′) = ∅,

4.3. STATIC ANALYSIS OF XML SCHEMA MAPPINGS 79

otherwise, and F = {r}. In exponential time, one can determinize the automata representing regular
expressions in productions and obtain an equivalent UFTA(DFA).

As tree automata do not look at data values at all, we cannot hope to do the same for general
tree patterns; we need to assume the patterns do not talk about data values either.

Lemma 4.7 For every pattern π without variables, one can compute in exponential time a UFTA(DFA)
Aπ such that L(Aπ) = {T ∣∣ T |= π}.

Proof. We construct Aπ by induction on the structure of π . If π =
 with
 ∈ � ∪ {_}, the claim
follows easily. Assume we have an automaton Aπ = 〈Q, δ, F 〉 for π . To obtain A//π add a fresh
state f , set δ//π (f, a) = Q∗(F ∪ {f })Q∗ for every a ∈ � (the equivalent DFA has two states),
δ//π (q, a) = δ(q, a) ∩ (Q − F)∗ for every a ∈ �, q ∈ Q (equivalent DFAs grow by at most one
state), and F//π = F ∪ {f }.

The last case is that of π =
[μ1, . . . , μn]. Let us first construct an automaton for
[μ] with

μ = (π1 → · · · → πk1) →∗ (πk1+1 → · · · → πk2) →∗ · · · →∗ (πkm−1+1 → · · · → πkm) .

Assume that we have already constructedAπj
= 〈Qj, δj , Fj 〉 for each πj .The state space ofA
[μ] is

Q = Q1 × Q2 × · · · × Qkm × {�, ⊥}. Consider the language M defined by the regular expression

Q∗(F̃1F̃2 · · · F̃k1)Q
∗(F̃k1+1F̃k1+2 · · · F̃k2)Q

∗ · · · Q∗(F̃km−1+1F̃km−1+2 · · · F̃km)Q∗ ,

where F̃j = {(q1, . . . , qkm+1) ∈ Q
∣∣ qj ∈ Fj }. It is not difficult to construct a NFA with O(km)

states recognizing M ; standard determinization gives an equivalent DFA B with 2O(km) states.
A
[μ]’s transition relation is now defined as

δ((q̄, s), a) = (δ1(q1, a) × δ2(q2, a) × · · · × δkm(qkm, a) × {�, ⊥}) ∩ K

where K = M if s = �, a =
 (or
 = _), and K = Q∗ − M , otherwise. Each such transition can
be represented by a product of automata B1, . . . ,Bn and B (or its complement), where Bj are single
exponential in ||πj ||, and B is single exponential in km. Since ||π || is roughly

∑n
j=1 ||πj ||, the size of

the product automaton
∏m

j=1 ||Bj || · ||B|| is single exponential in ||π ||. The accepting states are those
with � as the last component. In order to obtain an automaton for
[μ1, μ2, . . . , μn], it suffices to
take the product of A
[μi].

Verifying that the construction is single exponential is left to the reader. �

The tools we have developed can be applied directly to the consistency problem.

Proposition 4.8 Cons◦(↓, ↓∗, →, →∗, _) is Exptime-complete.

Proof. For a mapping (Ds, Dt , �st) to be consistent, there must exist a pair (T1, T2) such that for all
ϕ → ψ ∈ �st it holds that T1 |= ϕ implies T2 |= ψ . Suppose �st = {ϕi → ψi

∣∣ i = 1, 2, . . . , n}.
Then the existence of such a pair is equivalent to the existence of a subset I ⊆ {1, 2, . . . , n} satisfying

80 4. XML MAPPINGS AND DATA EXCHANGE

• there exists T1 |= Ds such that T1 �|= ϕj for all j �∈ I ,

• there exists T2 |= Dt such that T2 |= ψi for all i ∈ I .

This amounts to nonemptiness of the following automata:

• ADs × ∏
j �∈I Āϕj

,

• ADt × ∏
j∈I Aψj

.

The construction of each Aϕ takes exponential time. Since Aϕ are deterministic, complementing
them is straightforward. Testing nonemptiness of A1 × · · · × Ak can be done in time O(|A1| ×
· · · × |Ak|). Hence, the overall complexity is Exptime.

To prove Exptime-hardness, we provide a reduction from the nonuniversality problem for tree
automata. The idea of the encoding is that the source tree codes both an input tree and the run of
the corresponding deterministic powerset automaton. The st-tgds ensure that the run is constructed
properly, and that it contains only non-final states in the root.

Let � = {a1, . . . , ak} be the alphabet, and let A = (Q, q0, δ, F) where Q = {q0, . . . , qn}.
The source DTD Ds is

r, left, right → label q0 . . . qn (left right | leaf)
label → a1 | a2 | . . . | ak

q1, q2, . . . , qn → yes | no
and the target DTD Dt is simply r → ε.

In every tree conforming to Ds , the nodes labeled with r, left and right form a binary
tree over which we run the powerset automaton. A qi-child should lead to a yes iff the state of the
powerset automaton contains qi . This is ensured by the st-tgds

//_[qk/no, label/al, left/qi/yes, right/qj/yes] → ⊥ for qk ∈ δ(al, qi, qj)

where ⊥ is a fixed pattern inconsistent with Dt , e.g., r/r. Similarly, we enforce that every state, in
which A can be after reading a leaf with a given label, is a yes-state:

//_[qk/no, label/al, leaf] → ⊥ for qk ∈ δ(al, q0, q0).

Finally, we check that in the root of the run only non-finite states are present:

r/qk/yes → ⊥ for qk ∈ Q − F.

The obtained mapping is consistent iff there is a tree not accepted by A. �

Using a very simple observation, we can immediately extend the algorithm presented above to the
case with variables, provided that data comparisons are not allowed.

Theorem 4.9 The problem Cons(↓, ↓∗, →, →∗, _) is solvable in Exptime (and thus it is Exptime-
complete).

4.3. STATIC ANALYSIS OF XML SCHEMA MAPPINGS 81

Proof. In the absence of data comparisons, we can simply “forget” about the data values. For a tree
pattern π , let π◦ denote a tree pattern obtained from π by replacing all subformulae of the form
(t̄)

with
, for
 being a label or _ . Let �◦
st = {π◦

1 → π◦
2

∣∣ (π1 → ∃z̄ π2) ∈ �st }. It is not difficult to
see that (DS, DT , �st) is consistent if and only if (DS, DT , �◦

st) is consistent. �

The high complexity of consistency is discouraging, but it turns out that we can ensure
tractability by allowing only nested-relational DTDs. Unfortunately, this works for downward nav-
igation only, once we add even the simplest form of horizontal navigation (→), we lose tractability.
We leave the proof of the following proposition as an exercise.

Proposition 4.10 Under restriction to nested-relational DTDs

• Cons(↓, ↓∗, _) is solvable in polynomial (cubic) time;

• Cons(↓, ↓∗, →) is Pspace-hard.

We now move to classes of schema mappings that allow comparisons of attribute values. It is common
to lose decidability (or low complexity solutions) of static analysis problems once data values and
their comparisons are considered. Here we witness a similar situation: having either descendant or
next-sibling, together with either = or �=, leads to undecidability of consistency.

Theorem 4.11 Each of the following problems is undecidable: Cons(↓, ↓∗, =),
Cons(↓, ↓∗, �=), Cons(↓, →, =), and Cons(↓, →, �=).

Proof. We only prove undecidability of Cons(↓, ↓∗, =). The remaining cases are left as an exercise.
We describe a reduction from halting problem of 2-register machine, which is known to be unde-
cidable. That is, given a 2-register machine (defined below), we construct a schema mapping that is
consistent iff the machine halts. Trees encoding runs of a 2-register machine will be of the form:

r

I1(0, 0)

I1(1, 0)
...

R(0)

R(1)
...

Intuitively, the left branch is meant to represent sequence of states with data values representing
registers while the right one is a sequence to represent natural numbers. We do not have any equality
test against a constant (say, a natural number). So, what we really do is simulate values by the depth
from the root. More concretely, 0 and 1 above might as well be � and �. Whatever they are, we simply
take the value at the 0th level as 0 and the 1st level as 1, and so on. The above tree can be easily
described by a DTD. To make sure it is a proper run of the given machine, we use st-tgds to check
that the registers change their values according to legal transitions.

82 4. XML MAPPINGS AND DATA EXCHANGE

Let us now describe the reduction in detail. A 2-register machine M consists of a set of states
Q = {1, 2, . . . , f }, a list of instructions I = 〈Ii

∣∣ i ∈ Q \ {f }〉 (one instruction for each state apart
from the last state f), and two registers r1 and r2, each containing a natural number. An instantaneous
description (ID) of M is a triple 〈i, m, n〉 where i ∈ Q and m, n ∈ N are natural numbers stored in
r1 and r2, respectively.

An instruction of 2-register machine is either increment or decrement, and defines the transition
relation →M between IDs.

increment Ii = 〈r, j 〉, where i ∈ Q and r is one of r1 and r2.This means that M in state i increments
r and goes to state j :

〈i, m, n〉 →M

{
〈j, m + 1, n〉 if r = r1 ,

〈j, m, n + 1〉 if r = r2 .

decrement Ii = 〈r, j, k〉, where i, j, k ∈ Q and r is one of the two registers. This means that M in
state i can test whether r is 0, and go to state j if it is, or decrement r and go to k if it is not.
In symbols,

〈i, m, n〉 →M

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈j, 0, n〉 if r = r1 and m = 0 ,

〈j, m − 1, n〉 if r = r1 and m �= 0 ,

〈j, m, 0〉 if r = r2 and n = 0 ,

〈j, m, n − 1〉 if r = r2 and n �= 0 .

The initial ID is 〈1, 0, 0〉 and the final ID is 〈f, 0, 0〉. The halting problem for 2-register
machine is to decide, given a 2-register machine M , whether 〈1, 0, 0〉 →∗

M 〈f, 0, 0〉.
Let us now describe how to construct a mapping, which is consistent iff the given machine

halts. The source DTD Ds over the alphabet {r, I1, I2, . . . , If , R, �} is given by

r → I1R

Ii → Ij for all i such that Ii = 〈r, j 〉
Ii → Ij |Ik for all i such that Ii = 〈r, j, k〉
R → R|�

If , � → ε

where each Ii has two attributes corresponding to the values of the registers, and R has one attribute.
The target DTD Dt is simply {r → ε}. The st-tgds �st are described below.

As mentioned above, the sequence of R’s is meant to be that of natural numbers, but what
represents a number is the depth in the tree instead of a value itself. In other words, the data values
are used as indices, so they must be unique. The following disallows two values to appear more than
once.

//R(x)//R(x) → ⊥

4.3. STATIC ANALYSIS OF XML SCHEMA MAPPINGS 83

Let us now deal with the left branch, which is meant to encode the run itself. We have assumed that
the initial ID is 〈1, 0, 0〉; the constraints below exclude other situations.

r[I1(x, y), //R/R(x)] → ⊥
r[I1(x, y), //R/R(y)] → ⊥

Now, let us check that we proceed correctly. For each i such that Ii = 〈r1, j 〉, we need to enforce
that there is a number in the R-branch to set the value of r1 to, and that the next configuration is
indeed obtained by increasing r1.

r[//Ii(x, y), //R(x)/�] → ⊥
r[//Ii(x, y)/Ij (x

′, y′), //R(x)/R(x′′)] → x′ = x′′, y′ = y

For each i such that Ii = 〈r1, j, k〉, we need to say: if the next state is k, then r1 stores 0, and both
registers stay the same; if the next state is j , then r1 does not store 0, the register r1 gets decreased,
and r2 stays the same.

r[//Ii(x, y)/Ik(x
′, y′), R(x′′)] → x = x′′, x′ = x, y′ = y

r[//Ii(x, y)/Ij , R(x)] → ⊥
r[//Ii(x, y)/Ij (x

′, y′), //R(x′′)/R(x)] → x′ = x′′, y′ = y

For each i such that Ii = 〈r2, j 〉 or Ii = 〈r2, j, k〉 we add analogous st-tgds.
Finally, we have to make sure that we end properly. In each source tree, the left branch must

end with If , so we do not need to check that. It is enough to say that both registers are set to 0.

r[//Ii(x, y)/�, //R/R(x)] → ⊥
r[//Ii(x, y)/�, //R/R(y)] → ⊥

The obtained mapping (Ds, Dt , �st) is consistent iff there is a halting run of the given 2-register
machine. Thus we have proved that Cons(↓∗, =) is undecidable. �

This result raises the question whether there is any useful decidable restriction of the consistency
problem. Again, nested-relational DTDs give us a decidable restriction, but only for downward
navigation.

Theorem 4.12 Under the restriction to nested-relational DTDs:

• the problem Cons(↓, ↓∗, =, �=, _) is Nexptime-complete;

• the problem Cons(↓, →, =) is undecidable.

The lower bound for Cons(↓, ↓∗, =, �=, _) is obtained via a reduction from Bernays-Schönfinkel
satisfiability problem, i.e., satisfiability of first order formulae of the form

∃x1 · · · ∃xm∀xm+1 · · · ∀xn

k∧
i=1

∨
j=1

Ci,j ,

4.4. EXCHANGE WITH XML SCHEMA MAPPINGS 85

Nevertheless, let us first look at the case AbCons◦(⇓), i.e., checking absolute consistency of
mappings M◦ in which all references to attribute values have been removed. Slightly surprisingly,
it has lower complexity than Cons◦(⇓).

Proposition 4.13 AbCons◦(⇓) is �
p

2 -complete.

Proof. The set of dependencies �st is of the form {πi → π ′
i }i∈I , where patterns have no variables.

To check consistency of such a mapping, we need to check whether there exists a set J ⊆ I so that Dt

and all the π ′
j , j ∈ J are satisfiable, while Ds together with the negations of πk, k �∈ J , are satisfiable.

This makes consistency Exptime-complete (see Proposition 4.8). For absolute consistency, we only
need to verify that there does not exist J ⊆ I so that Ds and πj , j ∈ J , are satisfiable but Dt and
π ′

j , j ∈ J , are not. Notice that absolute consistency eliminates the need for checking satisfiability
of negations of patterns. Since satisfiability of patterns and DTDs is in NP, the above shows that
absolute consistency of mappings M◦ is in �

p

2 . Proving hardness is an instructive exercise. �

As suggested by the example, the problem becomes much harder if we allow variables:

Theorem 4.14 AbCons(⇓) is decidable. In fact, the problem is in Expspace and Nexptime-hard.

The proof of this result is based on rather involved analysis of a data structure that counts possible
numbers of occurrences of attribute values. The lower bound does not match the upper bound, but
it does tell us that any algorithm for solving AbCons(⇓) will run in double-exponential time, and
hence will be impractical unless restrictions are imposed.

Restrictions to nested-relational DTDs often worked for us, but in this case, they alone do
not suffice: we shall also need to forbid _ and ↓∗. If we relax any of the restrictions, the complexity
goes back to Nexptime-hardness:

Theorem 4.15 Over nested relational DTDs the problem AbCons(↓) is solvable in Ptime. If the
mappings are allowed to use either the wildcard or the descendant, the problem becomes Nexptime-hard.

An abridged summary of the complexity results related to the consistency problem is given in Fig. 4.4.

4.4 EXCHANGE WITH XML SCHEMA MAPPINGS
4.4.1 DATA EXCHANGE PROBLEM
The ultimate goal of data exchange is to answer queries over target data in a way consistent with
the source data. Just like in the relational case, we study conjunctive queries and their unions. As we
have learned, it is convenient to work with tree patterns, which have very similar expressivity. Thus,
for querying XML documents we use the same language as for the dependencies: tree patterns with
equalities and inequalities, to capture the analog of relational conjunctive queries (with inequalities).
And, of course, we allow projection.

86 4. XML MAPPINGS AND DATA EXCHANGE

That is, a query Q is an expression of the form

∃ȳ π(x̄, ȳ),

where π is a (generalized) tree pattern. The semantics is defined in the standard way. The output of
the query is the set of those valuations of free variables that make the query hold true

Q(T) = {
ā

∣∣ T |= ∃ȳ π(ā, ȳ)
}

.

This class of queries is denoted by CTQ (conjunctive tree queries). Note that CTQ is indeed
closed under conjunctions, due to the semantics of λ, λ′ in patterns.

We also consider unions of such queries: UCTQ denotes the class of queries of the form
Q1(x̄) ∪ · · · ∪ Qm(x̄), where each Qi is a query from CTQ . Like for schema mappings, we write
CTQ (σ) and UCTQ (σ) for σ ⊆ {↓, ↓∗, →, →∗, =, �=, _} to denote the subclass of queries using
only the symbols from σ . Recall that we are using abbreviations ⇓ for (↓, ↓∗) and ⇒ for (→, →∗).

Example 4.16 Recall the mapping defined in Example 4.5. Suppose we want to find out which
rulers succeeded more than one other ruler. This can be expressed over the target schema by the
following conjunctive query MultiSucc:

∃x ∃y rulers[ruler(x)/successor(z), ruler(y)/successor(z)] ∧ x �= y .

Just like in the relational case, the query might return different answers on different solutions to a
given source tree. For instance, for the source tree T1 shown in Fig. 4.1, two possible solutions are
T2 and T3 shown in Fig. 4.3. On T2 the query MultiSucc returns {“James VI & I”}, and on T3 the
answer is {“James VI & I”, “Charles I”}. �

What is the right answer to a query then? Since the queries return tuples of values, we can simply
adapt the certain answers semantics from the relational case. For a mapping M, a query Q, and a
source tree S conforming to Ds , we return the tuples which would be returned for every possible
solution:

certainM(Q, S) =
⋂ {

Q(T)

∣∣∣∣ T is a solution for S under M
}

.

The subscript M is omitted when it is clear from the context.
In our running example,

certainM(MultiSucc, T1) = {“James VI & I”} .

Note that when Q is a Boolean query, certainM(Q, S) is true if and only if Q is true for all the
solutions.

We are interested in the following decision problem, for fixed M and Q:

4.4. EXCHANGE WITH XML SCHEMA MAPPINGS 87

Problem: certainM(Q)

Input: a source tree S, a tuple s̄

Question: s̄ ∈ certainM(Q, S) ?

We have seen that in the relational case certain answers problem for CQs with inequalities is in
coNP. In the XML setting, it is also the case, but the proof is more involved. Below, we only give a
sketch of the main ideas.

Proposition 4.17 For every schema mapping M from SM(⇓, ⇒, =, �=) and every query Q from
UCTQ (⇓, ⇒, =, �=), the problem certainM(Q) is in coNP.

Proof idea. Take a query Q ∈ UCTQ �=, an XML schema mapping M = (Ds, Dt , �st), and a
source tree S conforming to Ds . Without loss of generality, we can assume that Q is Boolean.

Let A be the set of data values used in S. We can assume that the tuple s̄ only uses data values
from A (otherwise, the query is trivially false). A tree conforming to the target DTD is a solution
for S iff it satisfies every sentence from the following set:

� = {∃z̄ π2(ā, z̄)
∣∣ (π1(x̄, ȳ) → ∃z̄ π2(x̄, z̄)) ∈ �st , ā ∈ A|x̄| , b̄ ∈ A|ȳ| , S |= π1(ā, b̄)} .

(Note that for a fixed mapping the set � can be computed in Ptime.) The certain answer to Q is
false iff there exists a tree T such that T |= Dt , T |= �, T �|= Q. Assume that there exists such
a counter-example T . Fix a set of nodes witnessing �. We will show that we can trim most of the
non-witnessing nodes without satisfying Q, or violating Dt , so that T becomes polynomial.

Consider a first order logic formula equivalent to Q, and let k be its quantifier rank. The
k-type of a node is the set of all FO formulae it satisfies. It is known that there are only finitely many
nonequivalent FO formulae of any given quantifier rank. In consequence, there are only finitely
many different k-types. Since k depends only on the query, we have a fixed number of k-types.

Now, roughly, for any pair u, v of non-witnessing nodes with the same FO k-type, we cut the
nodes in-between and merge u, v (provided that cutting neither removes any witnessing node nor
leads to violation of the DTD). Cutting this way, vertically and horizontally, we make sure all the
witnesses are not too far apart, and the resulting tree has polynomial size. �

The certain answers problem easily becomes coNP-hard. In the next two subsections, we chart its
tractability frontier: we investigate the reasons for hardness and isolate a fairly expressive and natural
tractable case.

4.4.2 HARDNESS OF QUERY ANSWERING
In this section, we investigate coNP-hard cases of certain answers problem.The reasons for hardness
may come from three main sources: DTDs, st-tgds, and queries.

Let us first consider DTDs. It can be shown that for SM(↓, =) and CTQ (↓, =), there is
a dichotomy in the first parameter: if DTDs allow enough disjunction, the problem is coNP-hard,

88 4. XML MAPPINGS AND DATA EXCHANGE

otherwise, it is polynomial. Without giving the precise characterization of the class of mappings that
gives hardness, we show how simple these mappings can be.

We will give examples of an XML schema mapping M and a Boolean query Q such that
3SAT is reducible to the complement of certainM(Q), i.e., for each 3SAT instance ϕ

certainM(Q, Sϕ) is false iff ϕ is satisfiable,

where Sϕ is a tree encoding of ϕ described below.
Suppose we are given a 3-CNF formula ϕ = ∧n

i=1
∨3

j=1 cij , where cij is a literal. The tree
encoding,Sϕ , is best explained on a concrete example.A formula (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4)

is encoded as
r

C

L1
(1)

L2
(6)

L3
(7)

C

L1
(3)

L2
(5)

L3
(8)

V
(1,2)

V
(3,4)

V
(5,6)

V
(7,8)

Each V node has two attribute values encoding a variable and its negation with two different values.
For example, V (1, 2) indicates that x1 is encoded by the data value ‘1’ and ¬x1 by ‘2’. Also for each
clause in the formula, we have a C node that has three children labeled L1, L2, L3. Li holds the
data value encoding the ith literal in the clause. In the example above, the second literal of the first
clause is ¬x3, and hence the data value of L1 under the middle C node is ‘6’.

Let us first see that disjunction in DTDs leads to intractability. In accordance with the en-
coding above, let Ds be

r → C∗V ∗ V : @a1, @a2

C → L1L2L3 Li : @b

where i = 1, 2, 3. The target DTD Dt is defined as

r → C∗V ∗ V : @a1, @a2

C → L1L2L3 Li : @b

Li → K | N

where i = 1, 2, 3. The st-tgds �st simply copy the tree Sϕ in the target, guessing a K-node or an
N-node under each Li-node:

r/C[L1(x), L2(y), L3(z)] → r/C[L1(x), L2(y), L3(z)] ,

r/V (x, y) → r/V (x, y) .

K means that the literal is set to true, N means it is set to false . Now we need to check that
either a variable and its negation is set to true, or there is a clause with all literals set to false. This

4.4. EXCHANGE WITH XML SCHEMA MAPPINGS 89

is done by the following query:

⋃
i,j

∃x∃y r
[
V (x, y), C/Li(x)/K, C/Lj (y)/K

] ∪ r/C[L1/N, L2/N, L3/N]

Next, we show that setting a fixed number of children (greater than 1) with the same label can lead
to intractability. This time, the mapping itself is defined so that a solution for Sϕ corresponds to a
selection of (at least) one literal for each clause in ϕ. The query only asks if the selection contains a
variable and its negation. Thus the existence of a solution falsifying the query implies the existence
of a well-defined (partial) assignment that satisfies the formula ϕ.

The source DTD Ds is as before, and target DTD Dt is:

r → C∗V ∗ V : @a1, @a2

C → LLL L : @b

L → K?

The st-tgds �st are:

r/C[L1(x), L2(y), L3(z)] → r/C[L(x), L(y), L(z), L/K] ,

r/V (x, y) → r/V (x, y) .

Essentially, we copy Sϕ in the target, and with a K-child we indicate the chosen literals. As we
demand that in each clause at least one literal is chosen, a solution gives a valuation satisfying the
formula, provided that we have chosen consistently. This is verified by the query, which is defined as

∃x∃y r
[
V (x, y), C/L(x)/K, C/L(y)/K

]
.

Clearly, the query is true if a variable and its negation are chosen.
The examples above involve a lot of guessing on where patterns could be put in a target tree.

If the mapping is specific enough, this is not possible. In terms of DTDs, this restriction is well
captured by the notion of nested relational DTDs (for instance, there is no explicit disjunction).
Thus, in the analysis of the remaining two parameters, we will be assuming that the DTDs are
nested-relational.

Guessing can also be enforced by the second component of the problem: wildcard and de-
scendant cannot be allowed in the st-tgds if we aim for tractability.

Proposition 4.18 There exist mappings M1 ∈ SMnr(↓, _, =) and M2 ∈ SMnr(↓, ↓∗, =) and
queries Q1, Q2 ∈ CTQ (↓, =), such that both certainM1(Q1) and certainM2(Q2) are coNP-
complete.

90 4. XML MAPPINGS AND DATA EXCHANGE

Proof. The coNP upper bounds follows from Proposition 4.17. Below we prove the lower bound
for the first claim. The proof for the second claim can be obtained by replacing _ with ↓∗.

The reduction is very similar to the one used in the second example, only the selection of
literals for each clause is done by permuting the data values in the Li-children: we choose the literal
encoded by the data value stored in L1.

Thus, the source DTD Ds remains the same, the target DTD Dt is equal to Ds , the st-tgds
�st are

r/C[L1(x), L2(y), L3(z)] → r/C[_(x), _(y), _(z)] ,

r/V (x, y) → r/V (x, y) .

and the query is ∃x∃y r
[
V (x, y), C/L1(x), C/L1(y)

]
. �

In the next section, we will see that the sibling ordering and inequality in st-tgds does not cause
trouble. Now, let us move to the analysis of the query language.

One lesson learned from the relational case is that inequality in the query language leads to
coNP-hardness. Since the usual translation from the relational setting to the XML setting produces
mappings from SMnr(↓, =), we have the following result.

Corollary 4.19 There exist a schema mapping M ∈ SMnr(↓, =) and a query Q in CTQ (↓, =, �=)

such that certainM(Q) is coNP-complete.

Similarly, allowing any form of horizontal navigation in queries leads to intractability even for the
simplest mappings.

Proposition 4.20 There exist a schema mapping M from SMnr(↓), and two queries
Q1 ∈ CTQ (↓, →, =),Q2 ∈ CTQ (↓, →∗, =), such that both certainM(Q1) and certainM(Q2)

are coNP-complete.

Proof. The proof is almost identical as for Proposition 4.18. The mapping uses the same Ds . The
target DTD Dt is

r → C∗V ∗ V : @a1, @a2

C → L∗ L : @b

and the st-tgds �st are

r/C[L1(x), L2(y), L3(z)] → r/C[L(x), L(y), L(z)] ,
r/V (x, y) → r/V (x, y) .

Intuitively, we choose the literal having more than two following siblings. Since each C node has
at least three L children, clearly at least one literal is chosen for each clause. The query Q1 is just
∃x∃y r

[
L(x, y), C[L(x) → L → L], C[L(y) → L → L]]. Replacing → with →∗ gives Q2. �

4.4. EXCHANGE WITH XML SCHEMA MAPPINGS 91

We have seen that if we stick to child-based mappings, we cannot extend the query language. But
perhaps we can find a more suitable class of mappings? Observe that the mapping in the proof above
is very imprecise: the queries use horizontal navigation, and yet the mapping does not specify it at
all. It might seem a good idea to demand more precision, for instance, by allowing only a[b → c] or
a[c → b], but not a[b, c]. Unfortunately, the reduction above can be modified to obtain hardness
for such mappings too. Sibling order in queries inevitably leads to intractability.

In summary, if certain answers are to be tractable, the DTDs should be simple enough,
mappings should not use descendent nor wildcard, and queries should not use horizontal navigation
nor inequality.

What sense does it make to use sibling order in the mapping if we cannot ask queries about
it? Our running example shows how one can meaningfully use sibling order on the source side and
store the result on the target side as labeled tuples. In fact, the semantics of the mappings makes it
impossible to copy from the source to the target ordered sequences of children of arbitrary length.
Hence, whatever we encode on the target side with sibling order, we can equally well encode using
labeled tuples, provided we have a little influence on the target DTD. Thus, forbidding horizontal
navigation in the target database and queries, we do not lose much in terms of expressiveness.

4.4.3 TRACTABLE QUERY ANSWERING
In this section, we show a polynomial time algorithm for computing certain answers for mappings
from SMnr(↓, =) and queries from UCTQ (↓, ↓∗, _, =).The methods we develop can be extended
to SMnr(↓, →, →∗, =, �=).To simplify notation, we also assume that each leaf has a single attribute,
and internal nodes have no attributes. Removing this assumption poses no difficulties.

The approach, just like in the relational case, is via universal solutions. Recall that U is a
universal solution for S under M if it is a solution for S, and for each other solution T , there is a
homomorphism from U to T preserving data values used in S. The following lemma carries over
from the relational case.

Lemma 4.21 If U is a universal solution for a source tree S under a mapping M, and Q is a query in
UCTQ (↓, ↓∗, →, →∗, _ , =), then for every tuple ā

ā ∈ certainM(Q, S) ⇐⇒ ā ∈ Q(U) .

Fix a tree S and a mapping M = (Ds, Dt , �st). Consider the following set of partially valuated tree
patterns

�S,M = {ψ(ā, z̄)
∣∣ ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄) ∈ �st , and S |= ϕ(ā, b̄)} .

Rename variables in �S,M so that every pattern uses disjoint sets of variables. Let δS,M(z̄) be the
pattern obtained by merging at the root all patterns from the modified �S,M. A straightforward
check gives the following property.

Lemma 4.22 T ∈ SolM(S) ⇐⇒ T |= Dt and T |= ∃z̄ δS,M(z̄).

92 4. XML MAPPINGS AND DATA EXCHANGE

In light of this simple observation, constructing a universal solution for S under M ∈ SMnr(↓
, =) amounts to finding a “universal” tree satisfying a child-based pattern π (with equalities) and
conforming to a nested relational DTD D. To this end, we construct a pattern π ′ such that

• for every T , if T |= D then T |= π iff T |= π ′,

• π ′ viewed as a tree conforms to D.

We construct this pattern by means of two operations, called completion and merging.
The aim of the completion is to extend tree patterns with all the nodes required by the DTD.

As the given pattern uses only ↓, and DTDs are nested relational, this can be done in a unique way.
For a DTD D, and a tree pattern ϕ, construct cplD(ϕ) inductively as follows: if σ is a leaf, let

cplD(σ) = σ(y) ,

where y is a fresh variable; if σ is not a leaf, let

cplD(σ [ψ1, . . . , ψk]) = σ [cplD(ψ1), . . . , cplD(ψk), cplD(τ1), . . . , cplD(τm)] ,

where τ1, . . . , τm are all the letters τ such that σ → . . . τ . . . or σ → . . . τ+ . . . , and no formula of
the form τ [λ] occurs among ψi . Note that different occurrences of σ are be completed with different
variables.

It is fairly easy to see that the completed formula is equivalent to the original one.

Lemma 4.23 Let D be a nested relational DTD, and let ϕ be a tree pattern. For each T |= D and each
ā

T |= ϕ(ā) iff T |= cplDϕ(ā, c̄) for some c̄ .

The second operation is called merging. For a given ϕ, it produces an equivalent formula ϕ′ that
admits injective homomorphisms in trees conforming to the given DTD. Merging nodes introduces
equality constraints on data values, and so the result of the procedure will be a single tree pattern
together with a conjunction of equalities. For a given nested relational DTD D and a tree pattern ϕ,
we will construct mrgD(ϕ) inductively, adding new equalities to the global set E along the way. If
at some point we arrive at an inconsistency between ϕ and D, we output an unsatisfiable pattern ⊥.
In the beginning the set E is empty. To obtain mrgD(σ [ψ1, . . . , ψk]) proceed as follows.

1. For each τ such that σ → . . . τ . . . or σ → . . . τ? . . . , merge all the ψi ’s starting with τ , i.e.,

(a) if τ is a leaf, remove from the sequence ψ1, . . . , ψk all the formulae starting with τ , say
τ(t1), . . . , τ (tm), save from one, say τ(t1), and add equalities t1 = t2, . . . , t1 = tk to E,

(b) if τ is not a leaf, remove from the sequence ψ1, . . . , ψk all the formulae starting with τ ,
say τ [η̄1], . . . , τ [η̄m], and add a formula mrgD(τ [η̄1, . . . , η̄m]).

4.4. EXCHANGE WITH XML SCHEMA MAPPINGS 93

2. Replace all the remaining subformulae ψi with mrgD(ψi).

3. Return ⊥ if either of the following holds

(a) some ψi is of the form ρ[η̄] with ρ not present in the production for σ ,

(b) E contains an equality between two different constants,

(c) one of the recursive calls returned ⊥.

4. Return the obtained tree pattern and the equalities from E.

Keep in mind that every recursive call to mrg adds equalities to E.
For a pattern with equalities π, θ , let mrgD(π, θ) = π ′, E ∧ θ , where mrgD(π) = π ′, E.
Again, proving that the new formula satisfies the required properties is straightforward.

Lemma 4.24 Let D be a nested relational DTD, and let ϕ be a tree pattern (with equalities).

1. For each T |= D and for all ā

T |= ϕ(ā) iff T |= mrgDϕ(ā) .

2. If ϕ is satisfiable wrt D, mrgD(ϕ) admits injective homomorphisms in trees conforming to D.

The property we postulated follows.

Lemma 4.25 Let ϕ be a pattern (with equalities) satisfiable wrt a nested-relational DTD D.

• For every T |= D and every ā

T |= ϕ(ā) iff T |= mrgD(cplDϕ)(ā, c̄) for some c̄ .

• mrgD(cplDϕ) viewed as a tree conforms to D

Let us now return to the construction of a universal solution. Recall the pattern δS,M, com-
bining all right hands of st-tgds. Define ηS,M = mrgDt

(cplDt
δT ,M). Without loss of generality,

we can assume that ηS,M is a pure tree pattern. Indeed, if an equality says that v = t , replace each
occurrence of v with t , and remove this equality.

Lemma 4.26 For a every mapping M from SMnr(↓, =) and source tree S, the pattern ηS,M viewed
as a tree is a universal solution.

94 4. XML MAPPINGS AND DATA EXCHANGE

Proof. Let U be ηS,M viewed as a tree, with variables interpreted as new data values (nulls). Ob-
viously, U |= ∃z̄ η(z̄). By Lemma 4.25, U |= ∃ū δS,M(ū) and U |= Ds . Using Lemma 4.22, we
conclude that U is a solution.

To show that it is universal, take some solution T . By Lemma 4.25, T |= ∃z̄ ηS,M(z̄), and
so there exists a homomorphism from ηS,M to T . As U and ηS,M are isomorphic, this gives a
homomorphism from U to T , and proves universality of U . �

From Lemma 4.21 and Proposition 4.26, we immediately get the promised tractability result.

Corollary 4.27 For every M ∈ SMnr(↓, =) and Q ∈ UCTQ (↓, ↓∗, _ , =), certainM(Q) is com-
putable in polynomial time.

4.5 SUMMARY

• In XML schema mappings, analogs of st-tgds state how patterns over the source translate into
patterns over the targets.

• Conditions imposed by XML schemas on the structure of target instances can contradict
conditions imposed by st-tgds. This makes consistency of XML schema mappings an issue
even without target dependencies.

• The consistency problem is undecidable in general; in fact, the key feature that leads to un-
decidability is the ability to impose (in)equality of data values by the mappings. Without
this ability, the consistency problem is solvable in exponential time (which is reasonable for
problems at the level of schema mappings, not data), and there are useful tractable cases.

• Query answering, even for XML analogs of relational conjunctive queries, can be intractable
(coNP-complete, to be exact), and is tractable only under the following restrictions:

1. mappings that use nested-relational DTDs and patterns with child navigation and equal-
ity comparisons only; and

2. queries that use downward navigation (child, descendant), wildcard, and equality com-
parisons.

• In this restricted case there is a polynomial-time algorithm that builds a universal solution for
a given tree. Then certain answers can be computed by evaluating the query in that solution.

4.6. BIBLIOGRAPHIC COMMENTS 95

4.6 BIBLIOGRAPHIC COMMENTS
Tree patterns as they are presented here were introduced by Arenas and Libkin [2008], and fur-
ther extended with horizontal axes and data comparison by Amano et al. [2009]. The patterns were
introduced originally to represent conjunctive queries [Björklund et al., 2007, 2008; Gottlob et al.,
2004]. It should be noted, however, that to have the full expressive power of conjunctive queries,
one should allow DAG patterns, as it is done by Björklund et al. [2008]. David [2008] considers
a different kind of semantics based on injective homomorphisms. Expressing injective patterns as
CQs requires inequality on node variables. Satisfiability and evaluation of tree patterns is essentially
folklore as it appeared in many incarnations in the literature on tree patterns and XPath satisfia-
bility [Amer-Yahia et al., 2002; Benedikt et al., 2005; Björklund et al., 2008; Hidders, 2003]). The
presented proof is by Amano et al. [2009].

Systematic investigation into XML data exchange was initiated by Arenas and Libkin [2008],
who considered mappings based on restricted patterns disallowing horizontal navigation and data
comparisons. Those features were added by Amano et al. [2009]. Nested relational DTDs are con-
sidered by Abiteboul et al. [2006]; Arenas and Libkin [2004, 2008]. Empirical studies on their usage
are reported by Bex et al. [2004].

Query answering problem for child-based XML mappings was already considered by
Arenas and Libkin [2008], who gave a detailed complexity analysis. The influence of sibling or-
der and data comparisons was studied by Amano et al. [2010].

For basic information on tree automata, their decision problems and their complexity, see the
survey by Comon et al. [2007].

	Team rebOOk

